✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

混合蛙跳算法(Shuffled Frog Leaping Algorithm)是根据青蛙在石块上觅食时的种群分布变化而提出的算法。算法提出于2003年,时间有点久远,但相关的论文并不是特别多,仍有较大的研究和改进空间。

混合蛙跳算法( SFLA) 是一种受自然生物模仿启示而产生的基于群体的协同搜索方法。这种算法模拟青蛙群体寻找食物时,按族群分类进行思想传递的过程,将全局信息交换和局部深度搜索相结合,局部搜索使得思想在局部个体间传递,混合策略使得局部间的思想得到交换。在混合蛙跳算法中,群体( 解集) 由一群具有相同结构的青蛙( 解) 组成。整个群体被分为多个子群,不同的子群被认为是具有不同思想的青蛙的集合。子群中青蛙按照一定策略执行解空间中的局部深度搜索。在已定义的局部搜索迭代次数结束之后,思想在混合过程中进行了交换。局部搜索和混合过程一直持续到定义的收敛条件结束为止。全局信息交换和局部深度搜索的平衡策略使得算法能够跳出局部极值点,向着全局最优的方向进行,这也成为混合蛙跳算法最主要的特点.

【混合蛙跳算法】基于混合蛙跳算法求解单目标优化问题附matlab代码_图像处理

【混合蛙跳算法】基于混合蛙跳算法求解单目标优化问题附matlab代码_深度搜索_02

⛄ 运行结果

【混合蛙跳算法】基于混合蛙跳算法求解单目标优化问题附matlab代码_搜索_03

【混合蛙跳算法】基于混合蛙跳算法求解单目标优化问题附matlab代码_图像处理_04

【混合蛙跳算法】基于混合蛙跳算法求解单目标优化问题附matlab代码_深度搜索_05

⛄ 部分代码展示

function b = IsInRange(x, VarMin, VarMax)

    b = all(x>=VarMin) && all(x<=VarMax);

end

⛄ 参考文献

[1]陈亮. "基于混合蛙跳算法的背包问题求解算法." 河南城建学院学报 20.3(2011):4.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料