✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在目标跟踪领域,多目标状态估计算法是一种关键技术,它能够对多个目标在复杂环境中的状态进行准确估计。基于概率假设密度(PHD)的拓展卡尔曼滤波(EKF)是一种常用的多目标状态估计算法,本文将介绍PHD-EKF算法的实现流程。

首先,我们需要明确问题的背景和目标。在多目标跟踪中,我们的目标是根据一系列观测数据来估计目标的状态,包括位置、速度、加速度等。而PHD-EKF算法的目标是通过对目标的概率密度进行建模,来实现对多个目标状态的估计。

PHD-EKF算法的流程可以分为以下几个步骤:

  1. 初始化:首先,我们需要对目标的初始状态进行估计。这可以通过使用一些先验知识或者历史数据来进行初始化。
  2. 预测:在每个时间步骤中,我们首先进行预测步骤,即根据目标的动力学模型和先前的状态估计来预测目标的新状态。这个步骤可以使用拓展卡尔曼滤波来实现。
  3. 测量更新:在预测步骤之后,我们需要根据观测数据来更新目标的状态估计。这个步骤可以使用概率假设密度来实现,其中我们将目标的概率密度函数分解为一系列的高斯分布。
  4. 目标提取:在测量更新之后,我们需要从目标的概率密度函数中提取目标的估计状态。这可以通过计算高斯分布的期望和协方差来实现。
  5. 数据关联:在目标提取之后,我们需要将观测数据与目标的估计状态进行关联,以确定每个观测数据对应的目标。
  6. 删除冗余目标:在数据关联之后,我们可能会有一些冗余的目标估计。这些冗余目标可以通过一些准则进行删除,以提高估计的准确性。
  7. 重采样:最后,我们需要对目标的概率密度进行重采样,以保持概率密度的一致性。

通过以上步骤,我们可以实现对多个目标状态的准确估计。然而,需要注意的是,PHD-EKF算法在处理大量目标时可能会面临计算复杂度的问题。因此,在实际应用中,我们需要根据具体情况选择适当的算法和优化方法。

总结起来,基于概率假设密度结合拓展卡尔曼滤波的多目标状态估计算法(PHD-EKF)是一种有效的目标跟踪方法。通过对目标的概率密度进行建模和更新,我们可以实现对多个目标状态的准确估计。然而,在实际应用中需要注意算法的计算复杂度,并根据具体情况选择适当的算法和优化方法。希望本文对读者能够对PHD-EKF算法的实现流程有所了解,并在实际应用中发挥作用。

📣 部分代码

function X= gen_newstate_fn(model,Xd,V)

%nonlinear state space equation (CT model)

if ~isnumeric(V)
    if strcmp(V,'noise')
        V= model.B*randn(size(model.B,2),size(Xd,2));
    elseif strcmp(V,'noiseless')
        V= zeros(size(model.B,1),size(Xd,2));
    end
end

if isempty(Xd)
    X= [];
else %modify below here for user specified transition model
    X= zeros(size(Xd));
    %-- short hand
    L= size(Xd,2);
    T= model.T; 
    omega= Xd(5,:);
    tol= 1e-10;
    %-- pre calcs
    sin_omega_T= sin(omega*T);
    cos_omega_T= cos(omega*T);
    a= T*ones(1,L); b= zeros(1,L);
    idx= find( abs(omega) > tol );
    a(idx)= sin_omega_T(idx)./omega(idx);
    b(idx)= (1-cos_omega_T(idx))./omega(idx);
    %--  x/y pos/vel
    X(1,:)= Xd(1,:)+ a.*Xd(2,:)- b.*Xd(4,:);
    X(2,:)= cos_omega_T.*Xd(2,:)- sin_omega_T.*Xd(4,:);
    X(3,:)= b.*Xd(2,:) + Xd(3,:)+ a.*Xd(4,:);
    X(4,:)= sin_omega_T.*Xd(2,:)+ cos_omega_T.*Xd(4,:);
    %-- turn rate
    X(5,:)= Xd(5,:);
    %-- add scaled noise 
    X= X+ model.B2*V;
end

⛳️ 运行结果

【滤波跟踪】基于概率假设密度结合拓展卡尔曼滤波PHD-EKF实现多目标状态估计附matlab代码_路径规划

【滤波跟踪】基于概率假设密度结合拓展卡尔曼滤波PHD-EKF实现多目标状态估计附matlab代码_无人机_02

【滤波跟踪】基于概率假设密度结合拓展卡尔曼滤波PHD-EKF实现多目标状态估计附matlab代码_无人机_03

🔗 参考文献

[1] 齐滨,梁国龙,张博宇,等.一种基于自适应扩展卡尔曼概率假设密度滤波器的多目标跟踪方法:CN202011097165.7[P].CN112328959A[2023-10-30].

[2] 齐滨,梁国龙,张博宇,等.一种基于自适应扩展卡尔曼概率假设密度滤波器的多目标跟踪方法:202011097165[P][2023-10-30].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合