✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
无压含水层瞬变流问题在水文地质学和环境工程中至关重要。然而,求解这些问题通常需要复杂且耗时的数值模型。本文提出了一种基于物理信息神经网络 (PINN) 的新方法来解决无压含水层瞬变流问题。PINN 将物理定律融入神经网络中,从而能够直接从数据中学习复杂的物理过程。本文通过几个数值算例验证了所提出的方法的准确性和效率,表明 PINN 是一种求解无压含水层瞬变流问题的有前途的方法。
引言
无压含水层瞬变流问题描述了地下水中流动的变化,这些变化可能是由降水、抽水或其他扰动引起的。求解这些问题对于理解地下水系统、预测污染物迁移以及设计水资源管理策略至关重要。
传统上,无压含水层瞬变流问题是使用数值模型来求解的。然而,这些模型通常复杂且耗时,特别是对于大规模或复杂几何形状的问题。
物理信息神经网络 (PINN)
PINN 是一种神经网络,它将物理定律融入其架构中。通过将物理定律作为神经网络的损失函数的一部分,PINN 能够直接从数据中学习复杂的物理过程。
对于无压含水层瞬变流问题,PINN 的损失函数包括以下项:
-
**残差项:**衡量 PINN 预测的流场和实际流场之间的差异。
-
**物理约束项:**确保 PINN 预测的流场满足质量守恒和达西定律等物理定律。
方法
本文提出的方法包括以下步骤:
-
**数据收集:**收集代表无压含水层瞬变流问题的观测数据,例如水位和流量。
-
**PINN 模型训练:**使用观测数据训练 PINN 模型,使其能够预测流场。
-
**模型验证:**使用独立的数据集验证 PINN 模型的准确性。
结果
通过几个数值算例验证了所提出的方法的准确性和效率。算例包括:
-
**单孔介质含水层中的瞬态抽水:**PINN 模型能够准确预测抽水引起的压降和流量变化。
-
**分层含水层中的瞬态渗流:**PINN 模型能够捕获不同层之间的复杂相互作用。
-
**复杂几何形状含水层中的瞬态流:**PINN 模型能够处理具有复杂几何形状的含水层,而无需使用复杂的网格划分技术。
结论
本文提出了一种基于 PINN 的新方法来解决无压含水层瞬变流问题。PINN 方法将物理定律融入神经网络中,从而能够直接从数据中学习复杂的物理过程。通过数值算例验证了所提出的方法的准确性和效率,表明 PINN 是一种求解无压含水层瞬变流问题的有前途的方法。
未来研究方向
未来的研究方向包括:
-
探索 PINN 在其他水文地质问题的应用,例如污染物迁移和地下水管理。
-
开发更有效的 PINN 训练算法,以减少训练时间和提高准确性。
-
将 PINN 与其他机器学习技术相结合,以解决更复杂的水文地质问题。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
tic
% restoredefaultpath
%% 导入数据
res = xlsread('data.xlsx');
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
⛳️ 运行结果
🔗 参考文献
[1] 于永海.有压瞬变流反问题研究[D].河海大学,2001.
[2] 张巧丽,周建旭.无压输水系统水流过渡时间的影响因素探究[J].三峡大学学报:自然科学版, 2017, 39(5):6.DOI:10.13393/j.cnki.issn.1672-948X.2017.05.006.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类