✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
元胞自动机(CA)是一种离散动力系统,由一个网格组成,网格中的每个单元格都处于特定状态。CA 根据一组规则更新单元格的状态,这些规则取决于单元格及其邻居的状态。CA 已被用来模拟各种现象,包括流体动力学、交通流和生物生长。
在本文中,我们使用 CA 来模拟油膜界面聚合。油膜界面聚合是一种发生在油滴和水之间界面的过程,其中油滴聚集在一起形成更大的油滴。聚合过程受界面张力、粘度和扩散等多种因素的影响。
我们开发了一个 CA 模型来模拟油膜界面聚合。该模型基于以下规则:
-
油滴由网格中的单元格表示。
-
单元格的状态可以是“油”或“水”。
-
油滴根据界面张力、粘度和扩散等力移动。
-
当油滴碰撞时,它们会聚集在一起形成更大的油滴。
我们使用我们的 CA 模型来模拟不同条件下的油膜界面聚合。我们研究了界面张力、粘度和扩散对聚合过程的影响。我们发现界面张力是影响聚合过程的最重要因素。
介绍
油膜界面聚合是一种发生在油滴和水之间界面的过程,其中油滴聚集在一起形成更大的油滴。聚合过程受界面张力、粘度和扩散等多种因素的影响。
界面张力是油滴和水之间界面上的力。界面张力倾向于使油滴最小化其表面积。粘度是油滴和水之间的摩擦力。粘度倾向于阻止油滴移动。扩散是油滴和水之间分子的运动。扩散倾向于使油滴均匀分布在水中。
油膜界面聚合在许多工业和自然过程中都很重要。例如,油膜界面聚合用于石油工业中破乳和脱水。它还用于食品工业中制造乳化酱和调味品。
元胞自动机模型
我们开发了一个 CA 模型来模拟油膜界面聚合。该模型基于以下规则:
-
油滴由网格中的单元格表示。
-
单元格的状态可以是“油”或“水”。
-
油滴根据界面张力、粘度和扩散等力移动。
-
当油滴碰撞时,它们会聚集在一起形成更大的油滴。
我们使用以下方程来计算油滴之间的界面张力:
F_s = -γ∇·n
其中:
-
F_s 是界面张力
-
γ 是界面张力系数
-
n 是界面法线
我们使用以下方程来计算油滴之间的粘度:
F_v = -μ∇·v
其中:
-
F_v 是粘性力
-
μ 是粘度系数
-
v 是流速
我们使用以下方程来计算油滴之间的扩散:
F_d = -D∇c
其中:
-
F_d 是扩散力
-
D 是扩散系数
-
c 是浓度
我们使用以下方程来更新油滴的位置:
x_i(t+1) = x_i(t) + F_s(t) + F_v(t) + F_d(t)
其中:
-
x_i(t) 是油滴 i 在时间 t 的位置
-
x_i(t+1) 是油滴 i 在时间 t+1 的位置
结果
我们使用我们的 CA 模型来模拟不同条件下的油膜界面聚合。我们研究了界面张力、粘度和扩散对聚合过程的影响。
我们发现界面张力是影响聚合过程的最重要因素。界面张力越大,油滴聚集得越快。粘度和扩散对聚合过程的影响相对较小。
结论
我们已经开发了一个 CA 模型来模拟油膜界面聚合。该模型能够捕捉聚合过程的主要特征。我们发现界面张力是影响聚合过程的最重要因素。粘度和扩散对聚合过程的影响相对较小。
我们的模型可用于研究油膜界面聚合在工业和自然过程中的作用。该模型还可用于设计和优化破乳、脱水和乳化等工艺。
📣 部分代码
function [swapi,swapj]=judgedirection(index,i,j,n) %判断邻居向量中选择交换的元胞具体属于哪个方位
%index为方向数组的下标,i,j为中心元胞的行号和列号,n为列数
switch index
case 1
swapi=i-1;swapj=j;
case 2
swapi=i+1;swapj=j;
case 3
swapi=i;swapj=j-1;
case 4
swapi=i;swapj=j+1;
end
if swapj==0
swapj=swapj+n;
end
if swapj==n+1
swapj=swapj-n;
end
end
⛳️ 运行结果
🔗 参考文献
[1] 金小刚.基于Matlab的元胞自动机的仿真设计[J].计算机仿真, 2002, 19(4):4.DOI:CNKI:SUN:JSJZ.0.2002-04-007.
[2] 康振环、王琳琳、谭晓玉.基于元胞自动机模拟软件的图案在包装中的应用[J].信息记录材料, 2020, 21(10):3.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类