【元胞自动机】基于元胞自动机模拟油膜界面聚合附MATLAB代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用             机器学习

🔥 内容介绍

元胞自动机(CA)是一种离散动力系统,由一个网格组成,网格中的每个单元格都处于特定状态。CA 根据一组规则更新单元格的状态,这些规则取决于单元格及其邻居的状态。CA 已被用来模拟各种现象,包括流体动力学、交通流和生物生长。

在本文中,我们使用 CA 来模拟油膜界面聚合。油膜界面聚合是一种发生在油滴和水之间界面的过程,其中油滴聚集在一起形成更大的油滴。聚合过程受界面张力、粘度和扩散等多种因素的影响。

我们开发了一个 CA 模型来模拟油膜界面聚合。该模型基于以下规则:

  • 油滴由网格中的单元格表示。

  • 单元格的状态可以是“油”或“水”。

  • 油滴根据界面张力、粘度和扩散等力移动。

  • 当油滴碰撞时,它们会聚集在一起形成更大的油滴。

我们使用我们的 CA 模型来模拟不同条件下的油膜界面聚合。我们研究了界面张力、粘度和扩散对聚合过程的影响。我们发现界面张力是影响聚合过程的最重要因素。

介绍

油膜界面聚合是一种发生在油滴和水之间界面的过程,其中油滴聚集在一起形成更大的油滴。聚合过程受界面张力、粘度和扩散等多种因素的影响。

界面张力是油滴和水之间界面上的力。界面张力倾向于使油滴最小化其表面积。粘度是油滴和水之间的摩擦力。粘度倾向于阻止油滴移动。扩散是油滴和水之间分子的运动。扩散倾向于使油滴均匀分布在水中。

油膜界面聚合在许多工业和自然过程中都很重要。例如,油膜界面聚合用于石油工业中破乳和脱水。它还用于食品工业中制造乳化酱和调味品。

元胞自动机模型

我们开发了一个 CA 模型来模拟油膜界面聚合。该模型基于以下规则:

  • 油滴由网格中的单元格表示。

  • 单元格的状态可以是“油”或“水”。

  • 油滴根据界面张力、粘度和扩散等力移动。

  • 当油滴碰撞时,它们会聚集在一起形成更大的油滴。

我们使用以下方程来计算油滴之间的界面张力:

 

F_s = -γ∇·n

其中:

  • F_s 是界面张力

  • γ 是界面张力系数

  • n 是界面法线

我们使用以下方程来计算油滴之间的粘度:

 

F_v = -μ∇·v

其中:

  • F_v 是粘性力

  • μ 是粘度系数

  • v 是流速

我们使用以下方程来计算油滴之间的扩散:

 

F_d = -D∇c

其中:

  • F_d 是扩散力

  • D 是扩散系数

  • c 是浓度

我们使用以下方程来更新油滴的位置:

 

x_i(t+1) = x_i(t) + F_s(t) + F_v(t) + F_d(t)

其中:

  • x_i(t) 是油滴 i 在时间 t 的位置

  • x_i(t+1) 是油滴 i 在时间 t+1 的位置

结果

我们使用我们的 CA 模型来模拟不同条件下的油膜界面聚合。我们研究了界面张力、粘度和扩散对聚合过程的影响。

我们发现界面张力是影响聚合过程的最重要因素。界面张力越大,油滴聚集得越快。粘度和扩散对聚合过程的影响相对较小。

结论

我们已经开发了一个 CA 模型来模拟油膜界面聚合。该模型能够捕捉聚合过程的主要特征。我们发现界面张力是影响聚合过程的最重要因素。粘度和扩散对聚合过程的影响相对较小。

我们的模型可用于研究油膜界面聚合在工业和自然过程中的作用。该模型还可用于设计和优化破乳、脱水和乳化等工艺。

📣 部分代码

function [swapi,swapj]=judgedirection(index,i,j,n)    %判断邻居向量中选择交换的元胞具体属于哪个方位%index为方向数组的下标,i,j为中心元胞的行号和列号,n为列数switch index    case 1        swapi=i-1;swapj=j;    case 2        swapi=i+1;swapj=j;    case 3        swapi=i;swapj=j-1;    case 4        swapi=i;swapj=j+1;endif swapj==0    swapj=swapj+n;endif swapj==n+1    swapj=swapj-n;endend

⛳️ 运行结果

🔗 参考文献

[1] 金小刚.基于Matlab的元胞自动机的仿真设计[J].计算机仿真, 2002, 19(4):4.DOI:CNKI:SUN:JSJZ.0.2002-04-007.

[2] 康振环、王琳琳、谭晓玉.基于元胞自动机模拟软件的图案在包装中的应用[J].信息记录材料, 2020, 21(10):3.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值