✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
风电作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。然而,风电出力具有高度的不稳定性,难以准确预测,给电网调度和运行带来巨大挑战。近年来,基于深度学习的风电预测方法取得了显著的进展,其中变分模态分解 (VMD) 与卷积神经网络 (CNN) 优化长短记忆神经网络 (LSTM) 相结合的预测模型展现出良好的效果。本文将详细介绍 VMD-CNN-LSTM 模型的原理、实现步骤和预测效果,并与其他常用模型进行比较。
1. 引言
风电出力预测是风电场安全稳定运行的关键环节,也是实现风电并网和消纳的重要基础。传统的风电预测方法主要包括统计模型和物理模型,但这些模型往往难以准确捕捉风电数据的非线性特征和随机性。近年来,深度学习技术在风电预测领域得到了广泛应用,并取得了优于传统方法的预测效果。
深度学习模型可以自动学习风电数据的特征,并建立预测模型。其中,长短记忆神经网络 (LSTM) 是一种擅长处理时间序列数据的模型,已被广泛应用于风电预测。然而,LSTM 模型对数据预处理要求较高,且容易受到噪声和异常值的影响。
为了提高 LSTM 模型的预测精度,本文提出了一种基于 VMD-CNN-LSTM 的风电预测模型。VMD 是一种自适应信号分解方法,可以将原始风电数据分解为多个内在模态分量 (IMF),每个 IMF 对应于风电数据的不同时间尺度特征。CNN 是一种擅长提取空间特征的模型,可以有效地从 IMF 中提取特征。LSTM 模型则可以利用提取的特征进行时间序列预测。
2. VMD-CNN-LSTM 模型
2.1 VMD 原理
VMD 是一种基于维纳滤波器的自适应信号分解方法,可以将信号分解为多个内在模态分量 (IMF),每个 IMF 对应于信号的不同时间尺度特征。VMD 的目标函数如下:
2.2 CNN 原理
CNN 是一种擅长提取空间特征的模型,其结构类似于人脑的视觉皮层。CNN 通常由卷积层、池化层和全连接层组成。卷积层负责提取特征,池化层负责降维,全连接层负责分类或回归。
在 VMD-CNN-LSTM 模型中,CNN 用于从 VMD 分解得到的 IMF 中提取特征。CNN 的输入为 IMF,输出为提取的特征向量。
2.3 LSTM 原理
LSTM 是一种擅长处理时间序列数据的模型,其结构类似于循环神经网络 (RNN),但 LSTM 在 RNN 的基础上引入了门控机制,可以有效地解决 RNN 的梯度消失和梯度爆炸问题。
在 VMD-CNN-LSTM 模型中,LSTM 用于利用 CNN 提取的特征进行时间序列预测。LSTM 的输入为 CNN 提取的特征向量,输出为预测的风电出力值。
3. 模型实现步骤
VMD-CNN-LSTM 模型的实现步骤如下:
-
使用 VMD 将原始风电数据分解为多个 IMF。
-
使用 CNN 从 IMF 中提取特征。
-
使用 LSTM 利用 CNN 提取的特征进行时间序列预测。
-
对预测结果进行评估。
4. 结论
VMD-CNN-LSTM 模型是一种有效的风电预测模型,可以有效地提高预测精度。该模型结合了 VMD、CNN 和 LSTM 的优势,可以有效地提取风电数据的特征并进行时间序列预测。未来,我们将继续研究 VMD-CNN-LSTM 模型,并将其应用于其他领域。
⛳️ 运行结果
🔗 参考文献
[1]白雯睿,杨毅强,郭辉,等.基于VMD-CNN-LSTM的珠江流域水质多步预测模型研究[J].四川理工学院学报(自然科学版), 2022(004):035.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类