✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
地表覆盖分类是遥感领域一项重要的研究方向,其结果广泛应用于城市规划、环境监测、灾害评估等领域。近年来,随着无人机技术的快速发展,无人机搭载的高光谱传感器为获取高分辨率、高光谱地表信息提供了新的途径,极大地促进了地表覆盖分类的精度和效率。本文将介绍基于无人机高光谱影像的精确地表覆盖分类方法,并重点分析QUH数据集在该领域中的应用潜力。
1. 无人机高光谱影像在地表覆盖分类中的优势
相较于传统的卫星或航空遥感影像,无人机高光谱影像具有以下优势:
-
高空间分辨率: 无人机平台可以灵活地调整飞行高度,获取厘米级甚至更精细的空间分辨率影像,能够有效识别细微的地表特征。
-
高光谱分辨率: 高光谱传感器能够获取数百个窄波段的光谱信息,提供了丰富的光谱特征,有利于识别不同地表覆盖类型。
-
灵活性和可操作性: 无人机平台灵活可控,能够在特定区域进行精准的影像获取,并根据研究需求调整飞行路线和参数。
-
成本效益: 与卫星或航空遥感相比,无人机平台成本较低,能够更经济高效地获取高光谱影像数据。
2. QUH 数据集简介
QUH (Qingdao University Hyperspectral) 数据集是由青岛大学遥感与地理信息系统研究所收集的无人机高光谱影像数据集,用于研究高光谱影像在城市地表覆盖分类中的应用。该数据集包含多种地表覆盖类型,例如建筑物、道路、植被、水体等,具有以下特点:
-
丰富的覆盖类型: QUH 数据集涵盖了城市环境中常见的地表覆盖类型,能够满足各种研究需求。
-
高光谱分辨率: 该数据集包含200多个波段,光谱分辨率高,能够有效识别不同地表类型。
-
高空间分辨率: QUH 数据集的空间分辨率达到厘米级,能够清晰地识别地表特征。
-
高质量的标注: 数据集提供精准的地表覆盖类型标注,为模型训练和评估提供了可靠的基础。
3. 基于QUH 数据集的地表覆盖分类方法
基于无人机高光谱影像的地表覆盖分类方法主要分为以下步骤:
-
数据预处理: 包括影像校正、大气校正、噪声去除等,以提高影像质量和精度。
-
特征提取: 从高光谱影像中提取对地表覆盖类型敏感的特征,例如光谱特征、纹理特征等。
-
分类器选择: 选择合适的分类器,例如支持向量机 (SVM)、随机森林 (RF)、深度学习模型
⛳️ 运行结果
🔗 参考文献
H. Fu, G. Sun, L. Zhang, A. Zhang, J. Ren, X. Jia, et al., "Three-dimensional singular spectrum analysis for precise land cover classification from UAV-borne hyperspectral benchmark datasets," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 203, pp. 115-134, 2023. https://doi.org/10.1016/j.isprsjprs.2023.07.013.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类