✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着5G及未来无线通信技术的快速发展,大规模MIMO技术因其高数据速率和高频谱效率等优势而备受关注。然而,大规模MIMO系统面临着信道估计复杂度高、训练开销大的挑战。半盲信道估计技术利用信道先验信息,降低了训练开销,并提高了信道估计性能,是解决这一问题的有效方法。本文将对天线阵列几何形状对大规模MIMO-OFDM系统半盲结构化信道估计性能的影响进行深入分析。
1. 引言
大规模MIMO技术,即Massive MIMO,通过在基站配备数百甚至上千根天线,可大幅提高系统容量和能量效率,成为未来无线通信的关键技术。然而,大规模MIMO系统中信道估计的复杂度和训练开销也随之大幅增加。为了克服这一挑战,近年来,半盲信道估计技术得到了广泛关注。半盲信道估计技术利用信道先验信息,例如信道稀疏性、空间相关性等,以较少的训练开销实现准确的信道估计。
在半盲信道估计中,信道结构的先验信息对于估计性能至关重要。而天线阵列的几何形状直接影响着信道结构。不同的天线阵列几何形状会导致不同的信道空间相关性,进而影响半盲信道估计的性能。因此,深入分析天线阵列几何形状对半盲结构化信道估计性能的影响,对于优化大规模MIMO系统的设计和性能至关重要。
2. 系统模型
考虑一个单小区大规模MIMO-OFDM系统,基站配备𝑁N根天线,用户配备𝑀M根天线。假设系统采用OFDM调制,每个子载波上的信道可以表示为一个𝑀×𝑁M×N的矩阵,其元素表示不同天线之间的信道增益。
在半盲结构化信道估计中,假设信道矩阵可以分解为一个低秩矩阵和一个稀疏矩阵之和:
𝐻
=AB+S
3. 天线阵列几何形状的影响
天线阵列的几何形状会影响信道矩阵的结构,进而影响半盲信道估计的性能。常见的几种天线阵列几何形状包括:
-
均匀线性阵列 (ULA):天线均匀分布在一条直线上,这种阵列具有较高的空间分辨率,但其在垂直于阵列方向上的空间相关性较差。
-
均匀圆形阵列 (UCA):天线均匀分布在圆周上,这种阵列具有全方向的空间覆盖能力,但其在不同方向上的空间分辨率不同。
-
非均匀线性阵列 (NULA):天线非均匀分布在直线上,这种阵列可以灵活调整天线间距,以优化信道估计性能,但其设计复杂度较高。
不同的天线阵列几何形状会影响信道的空间相关性,进而影响AA矩阵的秩和SS矩阵的稀疏度,最终影响半盲信道估计的性能。例如,ULA阵列在水平方向上的空间相关性较高,而在垂直方向上的空间相关性较低,这会使得AA矩阵的秩较低,而SS矩阵的稀疏度较高。
4. 仿真结果与分析
为了验证不同天线阵列几何形状对半盲结构化信道估计性能的影响,我们进行了仿真实验。在仿真中,我们使用不同的天线阵列几何形状,包括ULA、UCA和NULA,并使用不同的半盲结构化信道估计算法,例如基于低秩矩阵分解的算法和基于稀疏矩阵恢复的算法。
仿真结果表明:
-
ULA阵列: 在水平方向上,ULA阵列可以有效地利用空间相关性,从而实现较高的信道估计精度;但在垂直方向上,其性能会受到限制。
-
UCA阵列: UCA阵列在不同方向上的空间分辨率不同,这导致其信道估计精度在不同方向上存在差异。
-
NULA阵列: NULA阵列可以通过优化天线间距来提高信道估计精度,但其设计复杂度较高。
仿真结果还表明,对于不同的信道估计算法,不同天线阵列几何形状的性能差异也存在不同。例如,基于低秩矩阵分解的算法更适合于ULA阵列,而基于稀疏矩阵恢复的算法更适合于NULA阵列。
5. 结论
天线阵列的几何形状对大规模MIMO-OFDM系统半盲结构化信道估计性能有显著影响。ULA阵列在水平方向上具有较高的性能,而UCA阵列具有全方向的空间覆盖能力,NULA阵列可以通过优化天线间距来提高性能。选择合适的阵列形状和信道估计算法,可以有效地提高半盲结构化信道估计性能。
⛳️ 运行结果
📣 部分代码
clear all;
close all;
clc;
addpath('./funcs');
%% Declear
Nt = 2; % number of transmit antennas
N_r_UCA = 8:8:64; % UCA
Nr_ULA = 4; % UCyA
snr_i = 5;
loop = 100;
gamma_f = {};
AOA_f = {};
ZOA_f = {};
CRB_SB_ULA_f = [];
CRB_SB_ULA_spec_f = [];
CRB_SB_UCyA_f = [];
CRB_SB_UCyA_spec_f = [];
for Nr_UCA = N_r_UCA
fprintf('Working at Nr_UCA: %d.\n', Nr_UCA);
tic
Nr = Nr_UCA * Nr_ULA; % ULA
L = 1; % Channel order
d_H = 4; % Number of propagation paths
Pxp = 1;
K = 64; % OFDM subcarriers
F = dftmtx(K);
FL = F(:,1:L);
sigmax2 = 1;
%% Generate position of elements in arrays
d_ULA_nor = 0.5;
d_UCA_nor = 0.5;
R_nor = 0.5 * d_UCA_nor/sin(pi/Nr_UCA);
ULA_elements_nor = zeros(3, 1, Nr);
UCyA_elements_nor = zeros(3, Nr_ULA, Nr_UCA);
for Nr_index=1:Nr
ULA_elements_nor(1, 1, Nr_index) = (Nr_index-1) * d_UCA_nor;
ULA_elements_nor(2, 1, Nr_index) = 0;
ULA_elements_nor(3, 1, Nr_index) = 0;
end
for Nr_ULA_index=1:Nr_ULA
for Nr_UCA_index=1:Nr_UCA
UCyA_elements_nor(1, Nr_ULA_index, Nr_UCA_index) = R_nor * sin((Nr_UCA_index-1)*(2*pi/Nr_UCA)) ; % x
UCyA_elements_nor(2, Nr_ULA_index, Nr_UCA_index) = R_nor * cos((Nr_UCA_index-1)*(2*pi/Nr_UCA)) ; % y
UCyA_elements_nor(3, Nr_ULA_index, Nr_UCA_index) = (Nr_ULA_index-1) * d_ULA_nor; % z
end
end
%% Signal Generation
% we use the Zadoff-Chu sequences
U = 1:2:100;
ZC_p = [];
for u = 1 : Nt
for k = 1 : K
ZC(k,u) = sqrt(Pxp) * exp( ( -1i * pi * U(u) * (k-1)^2 ) / K );
end
ZC_p = [ZC_p; ZC(:,u)];
end
X = [];
for ii = 1 : Nt
X = [X diag(ZC(:,ii))*FL];
🔗 参考文献
[1] 董玥昕.基于子空间的改进STBC-MIMO-OFDM系统半盲信道估计算法[D].吉林大学,2007.DOI:CNKI:CDMD:2.2007.092773.
[2] 任雁,李艳萍.基于EM算法的MIMO-OFDM系统半盲信道估计研究[J].长治学院学报, 2011, 28(2):3.DOI:10.3969/j.issn.1673-2014.2011.02.006.
[3] 王忆冉,朱留存,蒋昊天,等.基于CS的大规模MIMO-OFDM信道估计[J].科技与创新, 2020(4):2.DOI:CNKI:SUN:KJYX.0.2020-04-059.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类