【独家首发】Matlab实现海洋捕食者优化算法MPA优化Transformer-BiLSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

电力负荷预测对于电力系统的安全稳定运行至关重要。近年来,深度学习技术在负荷预测领域取得了显著进展,其中 Transformer-BiLSTM 模型因其在时间序列数据建模方面的优异性能而备受关注。然而,该模型的超参数优化对预测精度影响巨大,而传统优化算法效率低下,难以获得最优参数组合。本文提出了一种基于海洋捕食者优化算法 (MPA) 优化 Transformer-BiLSTM 模型进行负荷数据回归预测的新方法。该方法利用 MPA 算法的全局搜索能力和快速收敛特性,高效地寻找到模型的最优超参数,进而提升预测精度。通过 Matlab 实现该方法,并基于实际电力负荷数据进行实验验证,结果表明,与传统优化算法和未优化的 Transformer-BiLSTM 模型相比,MPA 优化后的模型在预测精度和稳定性方面均有显著提升。

**关键词:**电力负荷预测,Transformer-BiLSTM,海洋捕食者优化算法,超参数优化,回归预测

1. 引言

电力负荷是电力系统运行的重要指标,精确的负荷预测对于保障电力系统安全稳定运行、优化电力资源配置、降低运营成本等方面具有重要意义。随着电力负荷的波动性不断增加,传统的统计模型和机器学习模型难以满足预测需求。近年来,深度学习技术在负荷预测领域取得了显著进展,其中 Transformer-BiLSTM 模型因其在时间序列数据建模方面的优异性能而备受关注。

Transformer-BiLSTM 模型结合了 Transformer 的长距离依赖关系建模能力和 BiLSTM 的时间序列特征提取能力,能够有效地捕捉负荷数据中的时间序列特征和季节性特征。然而,该模型的超参数优化对预测精度影响巨大,例如:学习率、隐藏层单元数、注意力机制参数等。传统的优化算法,如网格搜索和随机搜索,效率低下,难以获得最优参数组合。

为了解决上述问题,本文提出了一种基于海洋捕食者优化算法 (MPA) 优化 Transformer-BiLSTM 模型进行负荷数据回归预测的新方法。MPA 算法是一种新型的生物启发式优化算法,该算法模拟海洋中捕食者狩猎行为,具有全局搜索能力强、收敛速度快、不易陷入局部最优等特点。

2. MPA 优化 Transformer-BiLSTM 模型

2.1 Transformer-BiLSTM 模型

Transformer-BiLSTM 模型的结构如图 1 所示。该模型包含三个部分:

  • 编码器部分: 由多个 Transformer 层组成,用于提取输入序列的特征信息。每个 Transformer 层包含自注意力机制和前馈神经网络。

  • 双向 LSTM 层: 用于学习时间序列数据中的时间依赖关系,并提取时间特征。

  • 解码器部分: 由多个全连接层组成,用于将编码器和 BiLSTM 层提取的特征信息映射到预测结果。

2.2 海洋捕食者优化算法 (MPA)

MPA 算法是一种模拟海洋中捕食者狩猎行为的优化算法。该算法包含两种捕食者类型:

  • 探索捕食者: 用于全局搜索,随机探索搜索空间。

  • 开发捕食者: 用于局部搜索,对当前最优解进行更细致的探索。

MPA 算法的具体流程如下:

  1. 初始化捕食者种群,包括探索捕食者和开发捕食者。

  2. 根据目标函数评估每个捕食者的适应度值。

  3. 更新捕食者的位置,包括探索捕食者的随机移动和开发捕食者的局部搜索。

  4. 循环步骤 2 和 3,直到满足停止条件。

2.3 MPA 优化 Transformer-BiLSTM 模型超参数

本文将 MPA 算法应用于优化 Transformer-BiLSTM 模型的超参数,具体步骤如下:

  1. 将 Transformer-BiLSTM 模型的超参数作为 MPA 算法中的优化变量。

  2. 利用 MPA 算法搜索最优超参数组合。

  3. 将找到的最优超参数组合应用于 Transformer-BiLSTM 模型,进行负荷数据预测。

3. 实验结果及分析

为了验证 MPA 优化 Transformer-BiLSTM 模型的效果,本文使用实际电力负荷数据进行实验验证。实验数据包括某地区 2020 年 1 月至 2021 年 12 月的逐小时电力负荷数据。

本文将 MPA 优化后的 Transformer-BiLSTM 模型与以下模型进行对比:

  • 未优化 Transformer-BiLSTM 模型: 采用默认超参数设置。

  • 网格搜索优化 Transformer-BiLSTM 模型: 利用网格搜索方法寻找最优超参数组合。

实验结果表明,MPA 优化后的 Transformer-BiLSTM 模型在预测精度和稳定性方面均有显著提升。具体表现为:

  • 预测误差指标 (RMSE、MAE、MAPE) 均显著降低。

  • 预测结果更接近实际负荷数据,预测曲线波动性更小。

4. 结论

本文提出了一种基于 MPA 算法优化 Transformer-BiLSTM 模型进行负荷数据回归预测的新方法。该方法利用 MPA 算法的全局搜索能力和快速收敛特性,有效地寻找到模型的最优超参数,进而提升预测精度。通过 Matlab 实现该方法,并基于实际电力负荷数据进行实验验证,结果表明,与传统优化算法和未优化的 Transformer-BiLSTM 模型相比,MPA 优化后的模型在预测精度和稳定性方面均有显著提升。

5. 未来工作

未来研究工作将进一步探讨以下几个方向:

  • 将 MPA 算法应用于其他深度学习模型,例如 LSTM、GRU 等。

  • 探索更有效的超参数优化策略,例如自适应 MPA 算法。

  • 将负荷预测模型应用于电力系统其他领域,例如电力调度、负荷管理等。⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 9
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值