【路径规划-机器人栅格地图】基于A星算法结合动态窗口法DWA实现机器人栅格地图动态路径规划附Matlab代码

 

    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

路径规划是移动机器人领域的核心问题之一,其目标是在复杂环境中为机器人找到一条安全、高效的路径,使其能够从起点顺利抵达目标点。在实际应用中,机器人所处的环境往往是动态变化的,例如障碍物的移动、环境信息的更新等。因此,针对动态环境的路径规划方法成为研究热点。

本文将探讨基于A星算法结合动态窗口法DWA实现机器人栅格地图动态路径规划的方法,并提供相应的Matlab代码示例。

1. 问题描述

假设机器人处于一个二维栅格地图中,每个栅格代表一个单元格,并根据其是否可通行进行标记。机器人需要从起点到达目标点,同时避免与障碍物发生碰撞。动态环境则意味着障碍物的位置和形状可能随时间变化。

2. 方法概述

本文采用的方法结合了两种经典算法:A星算法和动态窗口法。

2.1 A星算法

A星算法是一种启发式搜索算法,通过计算每个节点的估价函数来指导搜索方向,从而快速找到最优路径。估价函数由两部分组成:

  • **g(n):**从起点到当前节点n的实际路径成本,通常以路径长度或行驶时间衡量。

  • **h(n):**从当前节点n到目标节点的估计路径成本,通常使用曼哈顿距离或欧几里德距离进行估算。

A星算法的优势在于其能够高效地处理静态环境下的路径规划问题,但在动态环境下,由于无法及时获取最新的环境信息,其效果可能受到限制。

2.2 动态窗口法 (DWA)

动态窗口法是一种基于模型预测控制的局部路径规划方法,能够在实时环境中根据机器人的当前状态和环境信息进行决策。DWA将机器人的运动空间划分为多个窗口,每个窗口代表一个可能的运动方向和速度。通过对每个窗口进行评价,选择最优的运动方案。评价指标通常包括:

  • **路径长度:**越短越好

  • **碰撞风险:**越低越好

  • **与目标点的距离:**越近越好

  • **速度:**越快越好

DWA的优势在于其能够根据实时环境信息进行动态调整,但其局限性在于其只考虑局部信息,无法规划全局最优路径。

3. 方法实现

3.1 A星算法实现

A星算法的实现主要包括以下步骤:

  1. 初始化: 将起点放入open list中,并将所有其他节点的估价函数初始化为无穷大。

  2. 迭代:

    • 如果邻接节点m不在closed list中,则计算其估价函数f(m) = g(m) + h(m),并将节点m加入open list中。

    • 如果邻接节点m已在open list中,则比较其当前估价函数与计算得到的f(m),并选择更小的值。

    • 从open list中选择估价函数最小的节点n。

    • 将节点n从open list中移除,并加入closed list中。

    • 如果节点n为目标节点,则结束算法,并返回路径。

    • 否则,对节点n的所有邻接节点进行操作:

  3. 路径回溯: 从目标节点开始,沿着父节点链回溯至起点,即可得到最优路径。

3.2 动态窗口法实现

动态窗口法的实现主要包括以下步骤:

  1. 构建动态窗口: 根据机器人的当前速度和加速度限制,构建一系列可能的运动窗口。

  2. 模拟运动: 对每个运动窗口进行模拟,预测机器人未来的状态,并根据当前环境信息进行碰撞检测。

  3. 评价运动方案: 根据评价指标,对每个运动窗口的模拟结果进行评估。

  4. 选择最优运动方案: 选择评价指标最优的运动窗口,并将其作为机器人的下一步动作。

4. 代码实现

以下提供基于Matlab的代码实现,用于演示A星算法和动态窗口法的结合使用:

goal_point = [8, 8];

% 使用A星算法计算静态路径
path = astar(map, start_point, goal_point);

% 使用动态窗口法进行路径跟踪
for i = 1:length(path) - 1
% 获取当前位置和目标位置
current_position = path(i, :);
target_position = path(i + 1, :);

% 使用DWA算法规划下一步动作
action = dwa(current_position, target_position);

% 更新机器人位置
current_position = current_position + action;

% 绘制机器人路径
plot(current_position(1), current_position(2), 'ro');
hold on;
end

% 绘制栅格地图和路径
imshow(map);
hold on;
plot(path(:, 1), path(:, 2), 'b-');
hold off; 

5. 结论

本文介绍了基于A星算法结合动态窗口法实现机器人栅格地图动态路径规划的方法,并提供了相应的Matlab代码示例。该方法能够有效地解决动态环境下的路径规划问题,并具有较高的实时性。

未来展望

随着机器学习和人工智能技术的不断发展,未来可以将深度强化学习等技术应用于机器人路径规划领域,以进一步提高路径规划的效率和安全性。此外,还可以探索更加复杂的动态环境模型,例如包含移动障碍物、动态目标等,以使机器人能够更加灵活地应对现实世界的挑战。

⛳️ 运行结果

🔗 参考文献

[1] 黄辰.基于智能优化算法的移动机器人路径规划与定位方法研究[D].大连交通大学,2018.

[2] 邵磊,张飞,刘宏利,等.融合改进A*算法与动态窗口法的移动机器人路径规划[J].天津理工大学学报, 2024(001):040.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值