【SCI1区】Matlab实现斑点鬣狗优化算法SHO-Transformer-GRU故障诊断算法研究

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要

随着工业自动化水平的不断提升,复杂工业设备的运行状态监测与故障诊断变得至关重要。传统的故障诊断方法往往存在局限性,例如依赖专家经验、难以处理非线性数据等。近年来,深度学习技术在故障诊断领域取得了显著进展,但仍面临着模型训练效率低、泛化能力差等问题。针对上述问题,本文提出了一种基于斑点鬣狗优化算法SHO-Transformer-GRU的故障诊断方法。该方法将斑点鬣狗优化算法引入Transformer-GRU模型的超参数优化过程,有效提升了模型的诊断性能。实验结果表明,本文提出的方法在滚动轴承数据集上的诊断准确率和稳定性均优于传统的诊断方法,并展现出良好的泛化能力。

关键词:故障诊断;斑点鬣狗优化算法;Transformer;GRU;深度学习

引言

近年来,工业设备的复杂程度和运行环境的恶劣程度不断增加,导致设备故障发生的概率也随之增高。及时准确地诊断设备故障,对保证生产安全、提高生产效率、降低运营成本具有重要意义。传统的故障诊断方法主要依赖于专家经验,需要大量的时间和人力,且难以处理非线性数据。随着深度学习技术的快速发展,以神经网络为代表的模型在故障诊断领域取得了显著的成果,但仍面临着一些挑战。例如,深度学习模型往往需要大量的数据进行训练,而工业设备故障数据通常难以获取;同时,深度学习模型的超参数设置对模型性能影响较大,需要进行大量的实验进行调整。

针对上述问题,本文提出了一种基于斑点鬣狗优化算法SHO-Transformer-GRU的故障诊断方法。该方法将斑点鬣狗优化算法引入Transformer-GRU模型的超参数优化过程,有效提升了模型的诊断性能。具体而言,本文的主要贡献如下:

  • 提出了一种将SHO算法与Transformer-GRU模型相结合的故障诊断方法。 SHO算法的全局搜索能力可以有效地优化Transformer-GRU模型的超参数,提高模型的诊断精度。
  • 利用Transformer-GRU模型对设备运行状态进行特征提取和时间序列建模。 Transformer结构能够有效捕捉时间序列数据中的长程依赖关系,GRU结构可以学习时间序列数据的动态特征。
  • 在滚动轴承数据集上进行实验验证,证明了该方法的有效性和优越性。 实验结果表明,本文提出的方法在诊断准确率和稳定性方面均优于传统的诊断方法,并展现出良好的泛化能力。

本文结构安排如下:

  • 第二部分介绍了斑点鬣狗优化算法和Transformer-GRU模型的原理及特点。
  • 第三部分详细阐述了本文提出的SHO-Transformer-GRU故障诊断方法的具体实现步骤。
  • 第四部分在滚动轴承数据集上对提出的方法进行了实验验证,并与其他方法进行了对比。
  • 第五部分对本文的研究进行了总结,并展望了未来研究方向。

2. 相关技术概述

2.1 斑点鬣狗优化算法

斑点鬣狗优化算法 (Spotted Hyena Optimizer, SHO) 是一种基于群体智能的优化算法,其灵感来源于斑点鬣狗的狩猎行为。SHO算法通过模拟斑点鬣狗的群体合作、社会等级、搜索策略等行为,来寻找问题的最优解。该算法具有全局搜索能力强、收敛速度快等优点,适合解决复杂的优化问题。

2.2 Transformer模型

Transformer模型是一种基于注意力机制的深度学习模型,最初被用于自然语言处理领域。近年来,Transformer模型也逐渐被应用于其他领域,例如时间序列预测、故障诊断等。Transformer模型的关键是其注意力机制,该机制可以有效捕捉数据之间的长程依赖关系,克服了传统循环神经网络RNN在处理长序列数据时存在的梯度消失问题。

2.3 GRU模型

门控循环单元模型 (Gated Recurrent Unit, GRU) 是一种改进的循环神经网络模型,其主要特点是在隐藏层中加入了门控机制,有效地解决了传统RNN模型的梯度消失问题。GRU模型包含两个门:更新门和重置门,分别控制信息传递和信息重置。

3. SHO-Transformer-GRU故障诊断方法

本文提出的SHO-Transformer-GRU故障诊断方法主要包括以下步骤:

  • 数据预处理: 对采集到的设备运行状态数据进行清洗、降噪、特征提取等预处理操作,以便更好地训练模型。
  • 模型构建: 构建基于Transformer-GRU的深度学习模型,并利用SHO算法对模型的超参数进行优化。
  • 模型训练: 利用预处理后的数据对模型进行训练,并根据训练结果对模型进行调整。
  • 故障诊断: 利用训练好的模型对新的设备运行状态数据进行诊断,并识别设备可能存在的故障类型。

3.1 SHO算法优化Transformer-GRU模型超参数

Transformer-GRU模型的性能与超参数的选择密切相关,例如学习率、隐藏层数量、注意力头数等。本文采用SHO算法对模型的超参数进行优化,以提高模型的诊断性能。

3.2 模型训练和评估

模型训练阶段,利用预处理后的数据对SHO-Transformer-GRU模型进行训练。训练过程中采用交叉验证等方法对模型进行评估,并根据评估结果对模型进行调整,例如调整学习率、增加隐藏层等。

3.3 故障诊断

模型训练完成后,利用训练好的模型对新的设备运行状态数据进行诊断。模型会输出诊断结果,包括设备是否发生故障、故障类型等信息。

4. 实验验证

为了验证本文提出的SHO-Transformer-GRU故障诊断方法的有效性,在滚动轴承数据集上进行了实验。该数据集包含了不同工作条件下滚动轴承的振动信号,并被分为正常状态和故障状态。

实验结果表明,本文提出的SHO-Transformer-GRU方法在诊断准确率和稳定性方面均优于传统的诊断方法,例如基于支持向量机 (SVM) 的方法、基于K近邻 (KNN) 的方法等。同时,本文方法也展现出良好的泛化能力,在不同工作条件下的数据集上也能取得较好的诊断效果。

5. 结论与展望

本文提出了一种基于斑点鬣狗优化算法SHO-Transformer-GRU的故障诊断方法,并通过实验验证了该方法的有效性。该方法能够有效地提高模型的诊断性能,并展现出良好的泛化能力。未来将进一步研究以下方向:

  • 探索其他优化算法,进一步提高模型的诊断性能。 例如,可以尝试采用粒子群优化算法、遗传算法等进行优化。
  • 研究针对不同故障类型,设计不同的特征提取方法。 针对不同类型的故障,可以采用不同的特征提取方法,以提高模型的诊断精度。
  • 探索将SHO-Transformer-GRU方法应用于其他工业设备的故障诊断。 本文提出的方法可以推广到其他工业设备的故障诊断,例如电机、泵等。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 24
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
斑点鬣狗优化算法(Spotted Hyena Optimization,简称SHO)是一种模拟斑点鬣狗狩猎策略的优化算法,它结合了搜索的灵活性和强度。当应用于基于BP(Back Propagation,反向传播)神经网络的故障识别时,其优化过程可以分为以下几个步骤: 1. **初始化**:创建一个包含随机解(即神经网络权重)的群体,这些解代表可能的网络结构。 2. **评估 fitness**:利用BP神经网络对每个解(网络配置)训练一个模型,然后通过预测数据集的结果来评估模型的性能,如准确率、召回率等指标。 3. **斑点检测**:类似于斑点鬣狗的领地划分,选择当前最优解作为“领地中心”,其他解则根据其距离优解的好坏被分类为“近斑”或“远斑”。 4. **位置更新**:斑点鬣狗会尝试捕获更接近“领地中心”的“近斑”,这涉及到适应性学习速率调整和权重更新,通常使用梯度下降或类似方法。 5. **突变与扩散**:部分“远斑”可能会尝试随机变异,生成新的解决方案,同时允许一些程度的扩散,增加算法的探索能力。 6. **迭代与终止条件**:算法会在多次迭代后,如果发现收敛或满足预设的停止条件(比如达到预定的迭代次数),就结束优化并选取最终最佳的神经网络模型。 SHO-BP 故障识别的数据分类流程是这样的:首先将原始设备的运行数据转化为可用于神经网络训练的特征表示;然后用 SHO 算法优化神经网络的权值和偏置,使其能有效地将正常状态与故障状态分开;最后,用训练好的神经网络对新数据进行预测,确定是否存在故障。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值