✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
无人艇作为一种新型的水上移动平台,近年来在海洋监测、海洋勘探、军事领域等方面展现出广阔的应用前景。为了更好地理解无人艇的运动特性,并进行相应的控制系统设计,建立准确的无人艇运动模型至关重要。本文将重点介绍一种常用的无人艇模型——三自由度模型,并提供相应的Matlab代码实现。
三自由度模型简介
三自由度模型是指只考虑船舶在水平面内的三个自由度运动,即纵荡、横荡和首摇。该模型忽略了船舶的升沉、纵倾和横倾运动,在许多情况下能够有效地描述船舶的运动特性。
三自由度模型的数学描述
三自由度模型的数学描述通常采用牛顿-欧拉方法,并利用以下公式:
-
Matlab代码实现
以下代码基于上述三自由度模型,模拟了无人艇在无控制情况下的运动。
r = r0;
% 状态变量存储
t = 0;
u_data = u;
v_data = v;
r_data = r;
% 模拟循环
while t < t_end
% 计算外力/外力矩
Xh = 0; % 纵荡外力
Yh = 0; % 横荡外力
Nh = 0; % 首摇外力矩
% 计算速度变化
du = (Xh + Xuu*u^2) / m;
dv = (Yh + Yvv*v^2) / m;
dr = (Nh + Nrr*r^2) / Iz;
% 更新状态变量
u = u + du*dt;
v = v + dv*dt;
r = r + dr*dt;
% 更新时间
t = t + dt;
% 存储状态变量
u_data = [u_data; u];
v_data = [v_data; v];
r_data = [r_data; r];
end
% 绘制结果
figure;
subplot(3,1,1);
plot(t, u_data);
ylabel('纵荡速度(m/s)');
title('无人艇三自由度模型模拟结果');
subplot(3,1,2);
plot(t, v_data);
ylabel('横荡速度(m/s)');
subplot(3,1,3);
plot(t, r_data);
ylabel('首摇角速度(rad/s)');
xlabel('时间(s)');
代码说明
-
该代码首先定义了无人艇的质量、转动惯量、阻力系数等参数,以及初始状态和时间参数。
-
然后,代码初始化状态变量,并创建用于存储状态变量的数组。
-
在模拟循环中,代码首先计算外力/外力矩,并利用运动方程计算速度变化。
-
之后,代码更新状态变量,并记录每个时间步的状态变量。
-
最后,代码将模拟结果绘制成图表,方便观察无人艇的运动轨迹。
总结
本文介绍了一种简单的无人艇三自由度模型,并提供了相应的Matlab代码实现。该代码可以模拟无人艇在无控制情况下的运动,为更深入的无人艇控制系统设计提供基础。需要注意的是,该模型仅考虑了简单的阻力项,并未考虑其他因素,如波浪、风等影响。在实际应用中,需要根据具体情况对模型进行改进和完善。
展望
未来,随着无人艇技术的不断发展,无人艇模型的精度和复杂程度将会不断提高。研究人员将会进一步考虑各种外部因素的影响,以及更复杂的控制算法,以实现无人艇更加智能化和自主化的运动控制。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类