✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
海鞘群算法 (TSA) 是一种新型的生物启发式优化算法,它在经典的设计工程问题和基准测试问题中表现出了与其他算法竞争的能力,并取得了成功。然而,与一些基于种群的算法一样,TSA 容易陷入局部最优,收敛到全局最优需要较长时间,探索与利用之间存在不平衡,并且无法有效解决高容量的工程问题。本文提出了一种改进型海鞘群算法 (M-TSA),旨在克服这些问题。M-TSA 的改进主要体现在三个方面:一是采用螺旋运动策略改进海鞘个体的移动方式;二是采用 Lévy 运动策略改进海鞘群体运动的聚集策略;三是考虑了鱼类聚集物 (FAD) 的影响。本研究在 CEC'17 测试集、六个现实世界设计工程问题和两个复杂电力系统工程问题上测试了 M-TSA 算法的效率和鲁棒性。并将测试结果与文献中报道的其他算法和原始 TSA 进行比较。比较结果表明,M-TSA 在探索与利用之间取得了更好的平衡,并找到了更优的解,证明了 M-TSA 的有效性。本文使用 MATLAB 2020b 软件进行优化问题的仿真。
关键词: 海鞘群算法,改进型海鞘群算法,优化算法,探索与利用,全局最优,CEC'17 测试集,设计工程问题,电力系统工程问题。
引言
在现实世界中,许多工程问题都涉及优化问题,例如结构优化、电力系统优化、机器学习等。近年来,随着计算机技术的快速发展,基于自然启发式算法的优化方法得到了广泛应用,例如遗传算法 (GA)、粒子群优化算法 (PSO)、蚁群优化算法 (ACO) 等。这些算法通过模拟自然界中生物的群体行为来寻找问题的最优解。
海鞘群算法 (TSA) 是一种新兴的生物启发式优化算法,它模拟了海鞘在海洋中的群体行为。海鞘是一种海洋生物,它们通过释放一种吸引同类的化学物质来聚集形成群体,并通过不断调整自身位置来寻找食物。TSA 通过模拟海鞘的聚集行为和移动行为来寻找问题的最优解。
尽管 TSA 在许多问题上取得了成功,但它也存在一些局限性,例如容易陷入局部最优、收敛速度慢、探索与利用之间存在不平衡等。为了克服这些问题,本文提出了一种改进型海鞘群算法 (M-TSA)。
改进型海鞘群算法 (M-TSA)
M-TSA 在原始 TSA 的基础上进行了三个方面的改进:
1. 螺旋运动策略
M-TSA 采用螺旋运动策略来改进海鞘个体的移动方式。与原始 TSA 中的随机移动方式相比,螺旋运动策略能够更有效地探索解空间,避免陷入局部最优。
2. Lévy 运动策略
M-TSA 采用 Lévy 运动策略来改进海鞘群体运动的聚集策略。Lévy 运动是一种非线性随机游走,它可以帮助算法跳出局部最优,并快速探索解空间。
3. FAD 影响
M-TSA 考虑了鱼类聚集物 (FAD) 的影响。在海洋中,海鞘往往会聚集在 FAD 附近觅食。M-TSA 通过模拟 FAD 的影响来引导算法更有效地寻找最优解。
实验结果与分析
为了验证 M-TSA 算法的有效性,本研究在 CEC'17 测试集、六个现实世界设计工程问题和两个复杂电力系统工程问题上进行了测试。测试结果表明,M-TSA 算法在所有测试问题上都取得了比原始 TSA 和其他算法更好的性能。这表明,M-TSA 算法能够有效地克服 TSA 的局限性,并找到更优的解。
结论
本文提出了一种改进型海鞘群算法 (M-TSA),并通过实验验证了其有效性。M-TSA 通过采用螺旋运动策略、Lévy 运动策略和考虑 FAD 影响,成功地克服了原始 TSA 的局限性,并取得了更好的优化性能。未来,我们将进一步研究 M-TSA 算法的应用范围,并将其应用于更多复杂的工程问题。
⛳️ 运行结果
🔗 参考文献
Akdağ, Ozan. “A Modified Tunicate Swarm Algorithm for Engineering Optimization Problems.” Arabian Journal for Science and Engineering, vol. 48, no. 11, Springer Science and Business Media LLC, Apr. 2023, pp. 14745–71, doi:10.1007/s13369-023-07803-y.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类