【智能算法】囊状虫群算法(TSA)原理及实现

在这里插入图片描述


1.背景

2020年,S Kaur等人受到囊状虫群自然行为启发,提出了囊状虫群算法(Tunicate Swarm Algorithm, TSA)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

TSA模拟了囊状虫群在导航和觅食过程中的喷射推进和群体行为,群体行为会更新其他搜索代理关于最优解的位置。

在这里插入图片描述

2.2算法过程

冲突避免

为了避免个体之间的冲突,A 表示计算新的个体位置:
A ⃗ = G ⃗ M ⃗ G ⃗ = c 2 + c 3 − F ⃗ F ⃗ = 2 ⋅ c 1 (1) \begin{aligned}&\vec{A}=\frac{\vec{G}}{\vec{M}}\\&\vec{G}=c_{2}+c_{3}-\vec{F}\\&\vec{F}=2\cdot c_{1}\end{aligned}\tag{1} A =M G G =c2+c3F F =2c1(1)

其中,G代表重力,F代表洋流驱动力,M代表个体间相互作用力:
M ⃗ = [ P m i n + c 1 ⋅ P m a x − P m i n ] (2) \vec{M}=\begin{bmatrix}P_{min}+c_1\cdot P_{max}-P_{min}\end{bmatrix}\tag{2} M =[Pmin+c1PmaxPmin](2)

向最优领域个体移动

P D ⃗ = ∣ F S ⃗ − r a n d ⋅ P p ( x ) ⃗ ∣ (3) \vec{PD}=\mid\vec{FS}-r_{and}\cdot\vec{P_{p}(x)}\mid \tag{3} PD =∣FS randPp(x) (3)
其中,FS代表食物位置(最优适应度)。

位置收敛

囊状虫群个体向最优个体收敛:
P p ( x ) ⃗ = { F S ⃗ + A ⃗ ⋅ P D ⃗ , if r a n d ≥ 0.5 F S ⃗ − A ⃗ ⋅ P D ⃗ , if r a n d < 0.5 (4) \vec{P_p(x)}=\begin{cases} \vec{FS}+\vec{A}\cdot\vec{PD},&\text{if}r_{and}\geq0.5\\ \vec{FS}-\vec{A}\cdot\vec{PD},&\text{if}r_{and}<0.5\end{cases}\tag{4} Pp(x) ={FS +A PD ,FS A PD ,ifrand0.5ifrand<0.5(4)

种群行为

模拟囊状虫群体行为,保存前两个最优解,并根据最优个体位置更新其他搜索个体的位置:
P p ( x + 1 ⃗ ) = P p ( x ) ⃗ + P p ( x + 1 ⃗ ) 2 + c 1 (5) P_{p}(\vec{x+1})=\frac{\vec{P_{p}(x)}+P_{p}(\vec{x+1})}{2+c_{1}}\tag{5} Pp(x+1 )=2+c1Pp(x) +Pp(x+1 )(5)
在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试TSA性能 一键run.m

CEC2017-F14

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Kaur S, Awasthi L K, Sangal A L, et al. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103541.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值