✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
光电体积描记图 (Photoplethysmography, PPG) 是一种非侵入式的光学技术,通过测量血液容积变化来获取心率、血氧饱和度等生理信息。PPG信号获取便捷、成本低廉,在医疗健康监测、可穿戴设备等领域得到广泛应用。然而,PPG信号易受多种噪声干扰,例如运动伪影、基线漂移、电源干扰等,这些噪声会严重影响信号质量,导致心率等生理参数的测量精度降低,甚至造成错误判断。因此,对PPG信号进行有效去噪至关重要。本文将对PPG信号噪声过滤方法进行深入探讨,分析各种方法的优缺点,并展望未来研究方向。
一、PPG信号噪声来源及特性分析
PPG信号噪声主要来源于以下几个方面:
-
运动伪影 (Motion Artifact): 这是PPG信号中最常见的噪声来源之一。人体运动会导致传感器位移,引起光路变化,从而产生幅度较大、频率较低的噪声。运动伪影的特性表现为非平稳性、非周期性,且其频率范围较广,难以通过简单的滤波器去除。
-
基线漂移 (Baseline Wander): 基线漂移是指PPG信号基线的缓慢漂移,通常是由呼吸、血压波动等生理因素引起,也可能由传感器与皮肤接触不良或温度变化导致。基线漂移的频率较低,通常在0.1Hz以下。
-
电源干扰 (Power Line Interference): 电源干扰是由于周围环境中的电磁干扰导致的周期性噪声,其频率通常为50Hz或60Hz及其谐波。
-
生理噪声 (Physiological Noise): 除了运动伪影和基线漂移外,还有一些其他生理因素也会影响PPG信号,例如呼吸、肌肉活动等。这些生理噪声的频率范围较广,难以完全区分。
-
传感器噪声 (Sensor Noise): 传感器本身也会产生一些噪声,例如热噪声、散粒噪声等。这些噪声通常具有高频特性。
二、PPG信号噪声过滤方法
针对不同类型的PPG信号噪声,可以采用多种滤波方法进行去除。常用的方法包括:
-
线性滤波: 包括低通滤波、高通滤波、带通滤波和带阻滤波等。低通滤波可以去除高频噪声,例如传感器噪声;高通滤波可以去除低频噪声,例如基线漂移;带通滤波可以提取特定频率范围内的信号;带阻滤波可以去除特定频率的噪声,例如电源干扰。但是,简单的线性滤波器可能会导致信号失真,特别是对于非平稳噪声,例如运动伪影。
-
非线性滤波: 包括中值滤波、形态滤波等。中值滤波可以有效去除脉冲噪声,而形态滤波可以去除噪声的同时保留信号的边缘特征。这些方法对非平稳噪声的适应性较强,但计算复杂度较高。
-
小波变换 (Wavelet Transform): 小波变换具有良好的时频局部化特性,可以有效地去除不同频率范围的噪声,同时保留信号的细节信息。小波变换在PPG信号去噪中得到了广泛应用,其关键在于选择合适的小波基和分解层数。
-
经验模态分解 (Empirical Mode Decomposition, EMD): EMD是一种自适应的数据分析方法,可以将信号分解成一系列具有不同时间尺度的本征模态函数 (Intrinsic Mode Functions, IMFs)。通过去除包含噪声的IMFs,可以有效地去除噪声。EMD方法对非平稳信号的适应性较强,但存在模态混叠等问题。
-
独立成分分析 (Independent Component Analysis, ICA): ICA是一种盲源分离技术,可以将混合信号分离成多个独立的成分。通过识别和去除包含噪声的成分,可以有效地去除噪声。ICA方法对混合噪声的适应性较强,但需要较高的计算量。
-
基于机器学习的去噪方法: 近年来,基于机器学习的去噪方法也得到了广泛关注。例如,可以利用深度学习模型,例如卷积神经网络 (CNN) 和循环神经网络 (RNN),对PPG信号进行去噪。这些方法具有较强的学习能力,可以适应不同类型的噪声。
三、方法比较及选择
各种噪声过滤方法各有优缺点,选择合适的去噪方法需要根据具体应用场景和噪声特性进行考虑。对于简单的噪声,例如电源干扰,可以使用简单的线性滤波器;对于复杂的噪声,例如运动伪影,则需要采用更高级的非线性滤波器或基于机器学习的方法。 通常情况下,结合多种滤波方法可以获得更好的去噪效果。例如,可以先使用小波变换去除大部分噪声,然后再使用中值滤波去除剩余的脉冲噪声。
四、未来研究方向
尽管PPG信号去噪技术已经取得了显著进展,但仍然存在一些挑战:
-
鲁棒性增强: 目前的许多去噪方法对噪声类型的变化敏感,需要进一步提高其鲁棒性。
-
自适应算法: 开发能够自适应调整参数的去噪算法,以适应不同类型的PPG信号和噪声。
-
多模态融合: 结合其他生理信号,例如ECG信号,可以提高PPG信号去噪的精度。
-
实时处理: 开发能够进行实时处理的PPG信号去噪算法,以满足实时监测的需求。
总之,PPG信号噪声过滤是PPG信号处理中的一个关键问题。选择合适的去噪方法对于提高PPG信号的质量和准确性至关重要。未来的研究应该关注提高算法的鲁棒性、自适应性和实时处理能力,以及探索多模态融合等新的去噪方法。只有这样,才能更好地发挥PPG技术在医疗健康领域的应用潜力。
📣 部分代码
function [red_signal, ir_signal] = synthesizeSignal(time)
freqs = [1.3, 2.6, 3.9, 5.2, 6.5];
phases = [-1.58, -1.60, -1.61, -1.61, -1.30];
amp_red = [0.21, 0.15, 0.03, 0.01, 0.00] * 1e-3;
amp_ir = [0.62, 0.42, 0.09, 0.04, 0.002] * 1e-3;
N = length(time);
red_signal = zeros(1, N);
ir_signal = zeros(1, N);
for k = 1:length(freqs)
red_signal = 0.8 + red_signal + amp_red(k) * cos(2 * pi * freqs(k) * time + phases(k));
ir_signal = 1.4 + ir_signal + amp_ir(k) * cos(2 * pi * freqs(k) * time + phases(k));
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇