✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab代码及仿真咨询内容点击👇
🔥 内容介绍
目标融合定位是机器人、自动驾驶以及增强现实等领域中的一项关键技术,它旨在利用多个传感器的观测数据,综合估计目标在环境中的位置和姿态,从而提高定位精度和鲁棒性。在众多融合定位方法中,基于扩展卡尔曼滤波器 (Extended Kalman Filter, EKF) 的方法由于其理论成熟、易于实现以及较好的实时性能而备受青睐。本文将深入探讨基于 EKF 实现目标融合定位的原理、优势以及挑战,并分析其在实际应用中的潜在改进方向。
扩展卡尔曼滤波器是卡尔曼滤波器在线性系统上的非线性扩展。在目标融合定位的场景下,EKF 依赖于两个关键步骤:预测 (Prediction) 和更新 (Update)。预测步骤利用系统的运动模型,根据上一时刻的状态估计预测当前时刻的状态。由于现实世界中的运动模型往往是非线性的,EKF 通过对非线性运动模型进行一阶泰勒展开,将其线性化,从而近似地预测状态的均值和协方差。更新步骤则利用传感器观测数据来修正预测结果。同样地,如果测量模型也是非线性的,EKF 会对其进行线性化,然后计算卡尔曼增益,并利用该增益来融合预测状态和观测数据,得到当前时刻的最终状态估计。
基于 EKF 实现目标融合定位的优势主要体现在以下几个方面:
-
理论基础扎实: 卡尔曼滤波器及其扩展版本在控制理论和信号处理领域具有坚实的理论基础,经过了广泛的验证和应用,具有良好的可靠性和稳定性。
-
计算效率高: EKF 的计算复杂度相对较低,适合在资源有限的嵌入式系统或实时性要求高的应用场景中使用。相较于粒子滤波器等非参数化方法,EKF 不需要维护大量的粒子,从而降低了计算负担。
-
易于实现: EKF 的算法流程相对简单,可以很容易地在各种编程语言和平台上实现。各种成熟的 EKF 库也为开发人员提供了便利。
-
可融合多种传感器: EKF 能够融合来自不同传感器的信息,例如激光雷达 (LiDAR)、摄像头、惯性测量单元 (IMU) 和全球定位系统 (GPS) 等。通过合理设计状态向量和测量模型,可以有效地利用这些传感器数据的互补性,提高定位精度和鲁棒性。
然而,基于 EKF 的目标融合定位也面临着一些挑战:
-
线性化误差: EKF 通过一阶泰勒展开来线性化非线性模型,这会导致线性化误差,尤其是在非线性程度较高的情况下。线性化误差会降低状态估计的精度,甚至导致滤波器发散。
-
高斯假设: EKF 假设状态和测量噪声服从高斯分布。然而,在实际应用中,噪声可能受到各种因素的影响,不一定满足高斯分布的假设。非高斯噪声会导致状态估计偏差,降低滤波器的性能。
-
传感器数据关联: 在多目标跟踪场景下,如何正确地将传感器观测数据与已知的目标进行关联是一个挑战。错误的数据关联会导致错误的定位结果。
-
参数调整: EKF 的性能受到系统噪声协方差和测量噪声协方差的影响。这些参数需要根据实际情况进行调整,而合理的参数调整往往需要大量的实验和经验。
为了克服上述挑战,研究者们提出了许多改进方法。
-
采用更高级的滤波算法: 例如,无迹卡尔曼滤波器 (Unscented Kalman Filter, UKF) 使用无迹变换来近似非线性模型,避免了显式的线性化,从而降低了线性化误差。扩展信息滤波器 (Extended Information Filter, EIF) 则通过信息形式来表示状态估计,更适合分布式融合和大数据处理。
-
考虑非高斯噪声: 采用鲁棒统计方法,例如 Huber 损失函数或 M 估计,来降低非高斯噪声对状态估计的影响。此外,粒子滤波器等非参数化方法可以处理任意分布的噪声。
-
改进数据关联算法: 采用更高级的数据关联算法,例如联合概率数据关联 (Joint Probabilistic Data Association, JPDA) 或多假设跟踪 (Multiple Hypothesis Tracking, MHT),来提高数据关联的准确性。
-
自适应参数调整: 设计自适应滤波器,能够根据实际情况自动调整系统噪声协方差和测量噪声协方差,从而提高滤波器的鲁棒性和适应性。
在实际应用中,基于 EKF 的目标融合定位已经取得了显著的成果。例如,在自动驾驶领域,EKF 可以将 LiDAR、摄像头和 IMU 的数据融合,实现高精度的车辆定位。在机器人领域,EKF 可以用于 SLAM (Simultaneous Localization and Mapping),构建环境地图并同时进行自身定位。在增强现实领域,EKF 可以将摄像头和 IMU 的数据融合,实现稳定的姿态跟踪,从而提供更沉浸式的用户体验。
📣 部分代码
%busca indices para leitura de acordo com tempo
while DVLlogTime(contDVL) ~= timer
contDVL = contDVL + 1;
end
while MTiLogTime(contMTi) ~= timer
contMTi = contMTi + 1;
end
%lê dados DVL
if DVLbottomStatus(contDVL) == 1
VelXDVL = (DVLbottomVelX(contDVL)/100) * cos(0.5236) - (DVLbottomVelY(contDVL)/100) * sin(0.5236); %m/s 30 graus
VelYDVL = ((DVLbottomVelX(contDVL)/100) * sin(0.5236) + (DVLbottomVelY(contDVL)/100) * cos(0.5236)) *-1; %m/s 30 graus*-1;
VelZDVL = DVLbottomVelZ(contDVL)/100;
else if DVLwaterStatus(contDVL) == 1
VelXDVL = (DVLwaterVelX(contDVL)/100) * cos(0.5236) - (DVLwaterVelY(contDVL)/100) * sin(0.5236); %m/s 30 graus DVLwaterVelX(contDVL)/100;
VelYDVL = ((DVLwaterVelX(contDVL)/100) * sin(0.5236) + (DVLwaterVelY(contDVL)/100) * cos(0.5236)) *-1; %m/s 30 graus*-1; DVLwaterVelY(contDVL)/100*-1;
VelZDVL = DVLwaterVelZ(contDVL)/100;
else
VelXDVL = 0;
VelYDVL = 0;
VelZDVL = 0;
end
end
%lê dados MTi
Yaw = pi_to_pi(deg2rad(MTiYaw(contMTi)));%-firstMTi)); %degrees
VelYaw = MTiVelYaw(contMTi); %radsec
XX(4) = Yaw; %theta
XX(5) = VelXDVL; %VelX
XX(6) = VelYDVL; %VelY
XX(7) = VelZDVL; %VelZ
XX(8) = VelYaw; %VelYaw
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇