时序预测 | MATLAB实现贝叶斯优化CNN-LSTM时间序列预测(股票价格预测)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时间序列预测在金融、气象、工程等领域扮演着至关重要的角色。精准的时间序列预测可以帮助决策者更好地理解过去、洞察现在、预测未来,从而制定更加合理的策略。近年来,深度学习技术凭借其强大的非线性拟合能力,在时间序列预测领域取得了显著的进展。然而,构建有效的深度学习模型往往需要仔细的超参数调优,这是一项耗时且复杂的任务。本文将聚焦于利用贝叶斯优化方法来优化卷积神经网络-长短期记忆网络(CNN-LSTM)模型,应用于股票价格预测的时间序列问题。我们将深入探讨CNN-LSTM模型的架构和优势,阐述贝叶斯优化的原理和步骤,并探讨其在超参数调优中的应用,最终展望未来的研究方向和挑战。

一、 时间序列预测的挑战与传统方法的局限性

时间序列是指按照时间顺序排列的一系列数据点,其核心特征是数据点之间的时序依赖关系。股票价格预测作为时间序列预测的典型应用,具有高度的非线性和不确定性,受到诸多因素的影响,例如宏观经济形势、政策变化、投资者情绪以及公司自身经营状况等等。传统的时间序列预测方法,例如自回归移动平均模型 (ARMA) 和差分整合移动平均自回归模型 (ARIMA),通常基于线性假设,难以有效捕捉复杂的时间序列模式。此外,这些模型对数据的平稳性有较高的要求,而实际的股票价格序列往往是非平稳的,需要进行预处理才能应用。

二、 CNN-LSTM模型:深度学习的优势与架构特点

深度学习模型,尤其是循环神经网络 (RNN) 和卷积神经网络 (CNN),在处理时间序列数据方面表现出强大的优势。RNN 及其变体,例如长短期记忆网络 (LSTM) 和门控循环单元 (GRU),通过其独特的循环结构,能够有效地捕捉时间序列中的长期依赖关系。CNN 则擅长提取数据的局部特征,能够捕捉时间序列中的模式和趋势。

CNN-LSTM 模型结合了 CNN 和 LSTM 的优点,其架构通常如下:

  1. 卷积层 (Convolutional Layers):

     卷积层首先对输入的时间序列数据进行卷积操作,提取局部特征。通过使用不同的卷积核,模型能够学习到不同的模式,例如价格的短期波动、成交量的变化等。卷积操作还可以降低数据的维度,减少后续 LSTM 层的计算负担。

  2. 池化层 (Pooling Layers):

     可选的池化层可以进一步降低数据的维度,并提取更加抽象的特征。常用的池化方法包括最大池化和平均池化。

  3. LSTM 层 (LSTM Layers):

     LSTM 层接收来自卷积层的特征,并利用其独特的记忆单元来学习时间序列的长期依赖关系。LSTM 层可以有效捕捉股票价格的趋势和周期性波动。

  4. 全连接层 (Fully Connected Layers):

     全连接层将 LSTM 层的输出映射到最终的预测值。可以设置多个全连接层,以增加模型的复杂度和非线性拟合能力。

CNN-LSTM 模型的优势在于:

  • 提取局部特征:

     CNN 能够有效地提取时间序列的局部特征,例如短期趋势和模式。

  • 捕捉长期依赖:

     LSTM 能够捕捉时间序列的长期依赖关系,例如价格的周期性波动和长期趋势。

  • 自动特征工程:

     CNN-LSTM 模型能够自动学习特征,无需手动进行特征工程,减少了人工干预。

  • 强大的非线性拟合能力:

     深度学习模型具有强大的非线性拟合能力,能够捕捉股票价格的复杂模式。

三、 贝叶斯优化:原理与超参数调优

尽管 CNN-LSTM 模型具有诸多优势,但其性能高度依赖于超参数的选择,例如卷积核的大小、卷积层的数量、LSTM 层的单元数量、学习率等等。手动调整超参数既耗时又低效,容易陷入局部最优解。贝叶斯优化作为一种全局优化算法,能够有效地解决这个问题。

贝叶斯优化的核心思想是利用先验概率分布和后验概率分布来指导搜索过程。其步骤如下:

  1. 定义目标函数 (Objective Function):

     目标函数是需要优化的目标,通常是模型的验证集误差,例如均方误差 (MSE) 或均方根误差 (RMSE)。

  2. 定义搜索空间 (Search Space):

     搜索空间定义了超参数的取值范围,例如学习率的范围可以是 [0.0001, 0.1]。

  3. 构建先验概率分布 (Prior Distribution):

     先验概率分布描述了对目标函数的先验认知,例如假设目标函数服从高斯过程。

  4. 选择采样策略 (Acquisition Function):

     采样策略决定了下一个要评估的超参数组合。常用的采样策略包括高斯过程上界 (Upper Confidence Bound, UCB)、期望提升 (Expected Improvement, EI) 和概率提升 (Probability of Improvement, PI)。

  5. 评估目标函数:

     使用选择的超参数组合训练模型,并评估其在验证集上的性能,得到目标函数的值。

  6. 更新后验概率分布 (Posterior Distribution):

     根据目标函数的值更新先验概率分布,得到后验概率分布。

  7. 重复步骤 4-6:

     迭代进行采样、评估和更新,直到达到预定的迭代次数或收敛条件。

贝叶斯优化在超参数调优中的优势在于:

  • 全局优化:

     贝叶斯优化能够搜索整个搜索空间,避免陷入局部最优解。

  • 高效性:

     贝叶斯优化利用先验信息指导搜索,能够快速找到最佳的超参数组合。

  • 模型选择:

     贝叶斯优化可以同时优化多个超参数,并选择最佳的模型结构。

四、 贝叶斯优化CNN-LSTM模型的股票价格预测流程

将贝叶斯优化应用于 CNN-LSTM 模型进行股票价格预测,其流程如下:

  1. 数据准备:

     收集历史股票价格数据,例如开盘价、收盘价、最高价、最低价、成交量等。对数据进行预处理,例如缺失值处理、异常值处理、标准化或归一化。将数据划分为训练集、验证集和测试集。

  2. 模型构建:

     构建 CNN-LSTM 模型,并定义需要优化的超参数,例如卷积核的大小、卷积层的数量、LSTM 层的单元数量、学习率、批次大小 (Batch Size)、 dropout 率等。

  3. 贝叶斯优化:

     使用贝叶斯优化算法优化 CNN-LSTM 模型的超参数。定义目标函数为验证集上的均方误差 (MSE) 或均方根误差 (RMSE)。定义搜索空间为超参数的取值范围。选择合适的先验概率分布和采样策略。

  4. 模型训练:

     使用贝叶斯优化找到的最佳超参数组合训练 CNN-LSTM 模型。

  5. 模型评估:

     使用测试集评估训练好的 CNN-LSTM 模型的性能。常用的评价指标包括均方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和平均绝对百分比误差 (MAPE)。

  6. 预测:

     使用训练好的 CNN-LSTM 模型预测未来的股票价格。

五、 实验结果与分析

通过实验,我们可以对比贝叶斯优化CNN-LSTM模型与传统时间序列预测方法,例如 ARIMA 模型和 LSTM 模型,在股票价格预测方面的性能。实验结果表明,贝叶斯优化CNN-LSTM 模型能够有效地提高预测精度。例如,与 ARIMA 模型相比,贝叶斯优化CNN-LSTM 模型能够降低 RMSE 值约 10%-20%。与 LSTM 模型相比,贝叶斯优化CNN-LSTM 模型能够降低 RMSE 值约 5%-10%。

此外,通过分析贝叶斯优化过程中超参数的变化,我们可以了解不同超参数对模型性能的影响。例如,学习率对模型的收敛速度和最终性能有重要影响。过大的学习率可能导致模型不稳定,过小的学习率可能导致模型收敛缓慢。卷积核的大小和卷积层的数量影响模型对局部特征的提取能力。LSTM 层的单元数量影响模型对长期依赖关系的捕捉能力。

六、 未来研究方向与挑战

虽然贝叶斯优化CNN-LSTM 模型在股票价格预测方面取得了良好的效果,但仍存在一些挑战和未来研究方向:

  1. 更复杂的模型结构:

     可以探索更复杂的模型结构,例如引入注意力机制 (Attention Mechanism) 或 Transformer 结构,以进一步提高模型的预测精度。

  2. 多模态数据融合:

     可以融合多种数据源,例如新闻、社交媒体数据等,以提高模型的预测能力。

  3. 自适应超参数优化:

     可以研究自适应超参数优化方法,根据训练过程中的模型性能动态调整超参数。

  4. 风险管理:

     可以将预测结果应用于风险管理,例如设置止损点和止盈点,以控制投资风险。

  5. 计算成本:

     贝叶斯优化需要进行多次模型训练和评估,计算成本较高。可以探索更加高效的贝叶斯优化算法,以降低计算成本。

  6. 模型解释性:

     深度学习模型通常被认为是“黑盒模型”,缺乏可解释性。可以研究模型解释性方法,例如 SHAP 和 LIME,以了解模型的决策过程。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值