TOP期刊算法+分解组合+四模型对比!SGMD-FATA-Transformer-GRU多变量时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

光伏发电作为一种清洁、可再生的能源形式,在全球能源结构转型中扮演着日益重要的角色。准确预测光伏功率,对于电网调度、能源管理和电力市场交易至关重要。然而,光伏功率受到多种因素的影响,如辐射度、气温、气压、湿度等,呈现出高度的非线性、非平稳性和复杂的时间依赖性。因此,开发高精度的光伏功率预测模型,一直是研究领域的挑战。

近年来,深度学习技术在时间序列预测领域展现出强大的潜力。循环神经网络(RNN)及其变种,如门控循环单元(GRU),因其能够捕捉时间序列的长期依赖关系而备受青睐。Transformer模型凭借其自注意力机制,能够并行处理序列数据,并有效学习全局特征,也逐渐应用于时间序列预测。然而,单一的深度学习模型往往难以有效处理复杂的光伏功率时间序列。

为了提升预测精度,研究者们开始探索结合不同方法的混合模型。例如,将时间序列分解方法与深度学习模型相结合,能够有效地将复杂的时间序列分解为多个相对简单的子序列,从而降低模型学习的难度。辛几何模态分解(SGMD)作为一种先进的非线性时间序列分解方法,能够有效地提取时间序列中的固有模态函数(IMF),并保留原始信号的辛几何结构,在信号处理领域表现出优越的性能。

此外,深度学习模型的性能高度依赖于超参数的设置。传统的超参数优化方法,如网格搜索和随机搜索,效率低下且计算成本高昂。元启发式算法,如遗传算法、粒子群优化算法等,能够有效地在复杂搜索空间中寻找最优解。然而,这些算法在处理高维、非凸优化问题时,往往存在易陷入局部最优、收敛速度慢等问题。

鉴于以上分析,本文提出一种基于辛几何模态分解(SGMD)和海市蜃楼优化算法(FATA)优化的Transformer-GRU混合模型,用于多变量时间序列光伏功率预测。该模型,命名为SGMD-FATA-Transformer-GRU,旨在充分利用SGMD的分解能力、FATA的优化能力和Transformer-GRU的预测能力,从而显著提高光伏功率预测精度。

SGMD-FATA-Transformer-GRU模型的具体实现如下:

  1. 辛几何模态分解(SGMD): 首先,利用SGMD算法将光伏功率时间序列分解为多个固有模态函数(IMF)和一个残差分量。SGMD能够有效地提取时间序列中的不同频率成分,从而降低后续模型的学习难度。

  2. 海市蜃楼优化算法(FATA): FATA是一种新型的元启发式算法,灵感来源于海市蜃楼的形成过程,由Ailiang Qi于2024年8月发表在SCI的Top期刊《Neurocomputing》上。该算法具有较强的全局搜索能力和收敛速度,能够有效地寻找最优解。本文利用FATA算法优化Transformer-GRU模型的关键超参数,包括学习率、GRU隐含层单元数目和最大训练周期。FATA算法通过模拟光线的折射现象,在搜索空间中探索潜在的最优解,从而实现对Transformer-GRU模型的有效优化。

  3. Transformer-GRU混合模型: 对于SGMD分解得到的每个IMF分量和残差分量,分别构建一个Transformer-GRU模型进行预测。Transformer模型负责提取时间序列的全局特征,GRU模型负责捕捉时间序列的长期依赖关系。这种混合模型能够充分利用两种模型的优势,从而提高预测精度。

  4. 结果融合: 将每个Transformer-GRU模型的预测结果进行加权求和,得到最终的光伏功率预测结果。

实验设计与结果分析:

为了验证所提出的SGMD-FATA-Transformer-GRU模型的有效性,本文采用真实的光伏功率数据集进行实验。该数据集包含辐射度、气温、气压、湿度等输入特征,以及光伏功率作为输出变量。实验环境为Matlab2023b及以上版本。

实验结果表明,与传统的单变量时间序列预测模型、单一的Transformer模型和GRU模型相比,SGMD-FATA-Transformer-GRU模型在光伏功率预测方面取得了显著的提升。具体而言,该模型在均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等评价指标上均优于其他模型。这充分证明了SGMD分解、FATA优化以及Transformer-GRU混合模型在光伏功率预测中的有效性。

结论与展望:

本文提出了一种基于辛几何模态分解和海市蜃楼优化算法优化的Transformer-GRU混合模型,用于多变量时间序列光伏功率预测。实验结果表明,该模型能够有效地提高光伏功率预测精度,为电网调度和能源管理提供可靠的支持。

未来的研究方向可以包括:

  • 探索更加先进的时间序列分解方法,进一步降低模型的学习难度。

  • 研究更复杂的Transformer-GRU模型结构,例如引入注意力机制、残差连接等,以提高模型的表达能力。

  • 将该模型应用于不同类型的光伏电站,验证模型的泛化能力。

  • 探索其他的元启发式算法,例如鲸鱼优化算法、灰狼优化算法等,与FATA算法进行比较,选择更适合光伏功率预测的优化算法。

  • 考虑将天气预报数据融入到光伏功率预测模型中,进一步提高预测精度。

总之,本文提出的SGMD-FATA-Transformer-GRU模型为光伏功率预测提供了一种新的思路和方法,具有重要的理论价值和实际意义。该模型的程序代码可以作为核心级论文代码支撑,具有较高的创新性和学术价值。 尽管目前尚未发表,但凭借其潜在的学术价值和实用性,有望在相关领域获得广泛的关注。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值