✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
城市交通系统的拥堵问题日益严峻,对经济发展、环境质量和居民生活产生了深远影响。交通信号灯作为交通流控制的核心手段,其配时策略的优劣直接决定了路口乃至整个区域的通行效率。传统的信号配时方法通常基于流量模型、排队论或历史数据分析,这些方法在面对动态变化的交通状况时往往难以达到最优效果。近年来,随着人工智能技术的飞速发展,特别是强化学习(Reinforcement Learning, RL)的兴起,为解决复杂的交通优化问题提供了全新的思路。本文将深入探讨如何基于强化学习实现交通信号的优化配时,分析其原理、优势、挑战及未来发展方向。
强化学习在交通信号配时中的基本原理
强化学习是一种通过智能体(Agent)与环境(Environment)交互,学习如何采取行动以最大化长期累积奖励的机器学习范式。在交通信号优化配时场景下:
- 智能体(Agent)
:即交通信号控制器,负责根据当前交通状况决定信号灯的相位时长或相位顺序。
- 环境(Environment)
:整个交通路口或由多个路口组成的区域交通系统,包括车辆的到达、离开、排队、行驶速度等动态信息。
- 状态(State)
:描述当前环境的特征,通常包括路口各进口道的车辆排队长度、平均速度、到达率、历史通行情况、当前信号相位等信息。
- 动作(Action)
:智能体可以采取的控制行为,例如延长当前绿灯时长、缩短当前绿灯时长、切换到下一个相位等。在离散动作空间中,可以是选择下一个相位;在连续动作空间中,可以是调整当前相位的绿灯时长。
- 奖励(Reward)
:评估智能体当前动作的优劣程度。奖励函数的设计至关重要,应反映交通系统的优化目标,例如最小化总车辆延误、最小化总停车次数、最大化路口通行能力等。负奖励则表示不期望的后果,如造成严重拥堵。
- 策略(Policy)
:智能体根据当前状态选择动作的规则或函数。强化学习的目标就是学习一个最优策略,使得智能体在任何状态下都能选择能够最大化长期累积奖励的动作。
强化学习的核心在于通过试错(Trial and Error)的方式学习。智能体在某个状态下采取一个动作,环境会根据该动作改变状态并给出相应的奖励。智能体根据状态、动作和奖励的信息,更新其策略,以便在未来遇到类似状态时能够做出更好的决策。这种基于经验的学习过程使得强化学习能够适应动态变化的交通流,并发现非线性和复杂的控制策略,这是传统方法难以实现的。
基于强化学习实现交通信号优化配时的流程
基于强化学习实现交通信号优化配时通常遵循以下步骤:
- 环境建模与仿真
:构建一个高保真度的交通仿真环境至关重要。这可以通过交通仿真软件(如 SUMO, VISSIM, AIMSUN 等)或自主开发的仿真平台来实现。仿真环境需要能够准确模拟车辆的微观行为、交通流的动态演化以及信号灯的控制逻辑。
- 状态空间的定义
:选择能够充分反映当前交通状况的状态变量。常用的状态表示包括:
-
每个进口道的车辆排队长度。
-
每个进口道的车辆平均速度。
-
每个进口道在一段时间内的车辆到达率。
-
当前信号相位和剩余时长。
-
路口内车辆的位置和速度信息。
状态空间的大小对算法的效率有很大影响,需要权衡信息的完整性和计算的复杂性。
-
- 动作空间的定义
:确定智能体可以采取的动作。这取决于信号控制的粒度。
- 离散动作
:选择下一个信号相位。这种方式相对简单,但可能无法实现精细的绿灯时长控制。
- 连续动作
:直接输出每个相位的绿灯时长或对当前绿灯时长进行调整。这种方式具有更高的灵活性,但可能需要更复杂的强化学习算法。
- 离散动作
- 奖励函数的设计
:设计一个能够有效引导学习过程的奖励函数。常见的奖励函数目标包括:
-
负的总车辆延误(最小化延误)。
-
负的总停车次数(最小化停车)。
-
路口的车辆吞吐量(最大化吞吐量)。
-
路口车辆的平均速度(最大化速度)。
-
考虑公平性,例如最小化各进口道延误的方差。
奖励函数的设计需要结合实际的交通管理目标,并可能需要进行多次调整和实验。
-
- 强化学习算法的选择
:选择适合交通信号控制特点的强化学习算法。常用的算法包括:
- Q-learning 和 DQN (Deep Q Network)
:适用于离散状态和动作空间, DQN 利用深度神经网络来近似Q函数,解决了大规模状态空间的问题。
- SARSA (State-Action-Reward-State-Action)
:与Q-learning类似,但使用当前策略的动作进行更新,更关注在线学习。
- Actor-Critic 算法 (如 A2C, A3C, DDPG, TD3, SAC)
:适用于连续动作空间,能够学习策略函数和值函数。
- 基于策略梯度的方法 (如 REINFORCE)
:直接学习策略函数。
算法的选择取决于状态和动作空间的特性、计算资源以及期望的学习性能。
- Q-learning 和 DQN (Deep Q Network)
- 训练与评估
:在仿真环境中对强化学习智能体进行训练。训练过程中,智能体与环境不断交互,收集状态、动作、奖励和下一状态的四元组,并利用这些数据更新其策略。训练完成后,在独立的仿真场景或真实交通数据驱动的仿真中评估智能体的性能,与传统方法进行对比。评估指标包括总延误、停车次数、通行能力等。
- 实际部署与在线学习
:训练好的模型可以在实际交通系统中进行部署。在实际环境中,智能体可以继续进行在线学习,根据实时的交通数据进一步优化其策略。然而,在线学习需要更加谨慎,以避免在实际系统中做出可能导致严重拥堵的错误决策。
基于强化学习的交通优化配时优势
相比于传统方法,基于强化学习的交通优化配时具有以下显著优势:
- 自适应性强
:强化学习模型通过与环境的交互学习,能够适应动态变化的交通流,例如潮汐交通、突发事件引起的拥堵等,从而提供更灵活和高效的控制策略。
- 无需精确模型
:传统方法通常依赖于精确的交通流模型,而这些模型往往难以捕捉交通系统的复杂性和不确定性。强化学习是一种无模型或部分模型的学习方法,可以直接从经验中学习最优策略,无需对底层交通流进行精确建模。
- 能够发现非线性策略
:交通系统的优化问题是非线性和高维度的。强化学习,特别是结合深度学习的深度强化学习,具有强大的非线性函数拟合能力,能够发现传统方法难以获得的复杂控制策略。
- 长期优化目标
:强化学习的目标是最大化长期累积奖励,这意味着它能够考虑当前动作对未来交通状况的影响,避免只关注眼前利益而导致未来拥堵的短视行为。
- 分布式和协作控制潜力
:强化学习可以扩展到多智能体系统,实现多个路口之间的协调控制,从而优化整个区域的交通流。不同的智能体可以相互学习,共同协作,提高整体交通系统的效率。
⛳️ 运行结果
🔗 参考文献
[1] 甘凌霄.孤岛微电网中多种分布式低碳能源智能优化分配算法研究[D].华南理工大学[2025-04-23].DOI:CNKI:CDMD:2.1013.150935.
[2] 邵维.基于TD方法的单交叉口信号配时优化研究[D].长沙理工大学,2012.DOI:10.7666/d.y2091101.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇