【信号处理】瑞利衰落通道上的差分MPSK研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

瑞利衰落通道特性

  • 瑞利衰落是一种常见的无线信道衰落模型,其幅度服从瑞利分布。在瑞利衰落通道中,信号的包络会随机变化,这是由于多径传播导致的信号在不同路径上的相位和幅度变化,最终相互叠加造成的。

  • 这种衰落会导致信号的功率随时间随机波动,对通信系统的性能产生显著影响,特别是在高速数据传输和对相位敏感的调制方式如 MPSK 中。

差分 MPSK 原理

  • 差分 MPSK 是一种利用信号相位变化来传输信息的调制方式。与传统的 MPSK 不同,它不是根据绝对相位来判决信号,而是根据相邻符号之间的相位差来解码信息。

  • 例如,在差分四相相移键控(DQPSK)中,信息是通过前后两个符号的相位差来携带的,如 0°、90°、180°、270° 分别代表不同的信息比特组合。这样可以避免在接收端进行复杂的载波相位同步,降低了系统的实现复杂度。

瑞利衰落通道对差分 MPSK 的影响

  • 误码率性能下降

    :由于瑞利衰落引起的信号幅度和相位的随机变化,接收端接收到的信号相位差可能会偏离正确的值,导致误码率增加。特别是在衰落深度较大时,信号的幅度可能会变得很小,此时噪声对相位差的影响会更加明显,进一步恶化误码率性能。

  • 相位模糊问题

    :虽然差分 MPSK 对载波相位同步要求较低,但瑞利衰落可能会导致相位模糊现象。即接收端在解码相位差时,可能会因为衰落引起的相位快速变化而出现错误的判断,尤其是在信道变化较快的情况下。

针对瑞利衰落通道的差分 MPSK 性能改善方法

  • 分集技术

    :采用空间分集、时间分集或频率分集等技术可以有效对抗瑞利衰落。例如,通过在发射端使用多个天线进行发射(空间分集),接收端可以接收到多个独立衰落的信号副本,然后通过合并技术将这些副本进行处理,提高信号的可靠性,降低误码率。

  • 信道编码

    :结合信道编码技术,如卷积码、Turbo 码或低密度奇偶校验(LDPC)码等,可以在不增加发射功率和带宽的情况下,提高系统的纠错能力,从而改善在瑞利衰落通道下差分 MPSK 的性能。编码后的信号在接收端经过解码,可以纠正一定数量的错误,减少衰落对信息传输的影响。

  • 自适应调制与编码

    :根据信道的衰落状态动态调整差分 MPSK 的调制阶数和编码速率。当信道条件较好时,采用高阶的差分 MPSK 调制和高编码速率以提高数据传输效率;当信道条件恶化时,降低调制阶数和编码速率,以保证信号的可靠性,从而在不同的瑞利衰落环境下都能获得较好的性能。

研究现状与展望

  • 目前,对于瑞利衰落通道上差分 MPSK 的研究已经取得了很多成果,包括性能分析、改进的调制解调算法以及各种抗衰落技术的应用等。然而,随着无线通信技术的不断发展,如 5G 乃至未来的 6G 通信对高速率、低延迟和高可靠性的要求越来越高,仍有许多问题需要进一步研究。

  • 未来的研究方向可能包括在更复杂的衰落信道模型下(如考虑多普勒频移、非平稳衰落等)对差分 MPSK 性能的分析和优化,以及结合新型的通信技术(如大规模 MIMO、毫米波通信等)探索更有效的信号处理方法,以满足下一代无线通信系统的需求。

⛳️ 运行结果

🔗 参考文献

[1] 李忻,聂在平.双分集最大比合并相关瑞利衰落的误码性能[J].电波科学学报, 2005, 20(2):3.DOI:10.3969/j.issn.1005-0388.2005.02.004.

[2] 李光球.相关衰落信道上MIMO系统中组合SC/MRC的性能分析[J].电波科学学报, 2009, 24(1):4.DOI:10.3969/j.issn.1005-0388.2009.01.029.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值