✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在多变量回归预测中,Transformer、GRU、CNN、Transformer-GRU 以及 CNN-GRU 这五种模型各自具有独特的特点和优势,下面将分别介绍它们的原理、在多变量回归预测中的应用以及性能比较:
1. GRU(门控循环单元)
- 原理
:GRU 是循环神经网络(RNN)的一种变体,通过引入门控机制解决了传统 RNN 中的梯度消失和梯度爆炸问题。它包含更新门和重置门,更新门决定了前一时刻的信息保留程度,重置门控制了当前输入与前一时刻状态的结合方式。在多变量回归预测中,GRU 可以处理具有时间序列特征的数据,捕捉数据中的长期依赖关系。
- 应用
:适用于时间序列数据的多变量回归预测,例如电力负荷预测、股票价格预测等。在电力负荷预测中,输入可以包括历史负荷数据、天气数据、时间信息等多变量,GRU 根据这些输入预测未来的负荷值。
2. CNN(卷积神经网络)
- 原理
:CNN 主要用于处理具有空间结构的数据,通过卷积层、池化层和全连接层提取数据的特征。卷积层使用卷积核在数据上滑动,提取局部特征;池化层用于降维,减少计算量;全连接层将提取的特征映射到输出空间。在多变量回归预测中,CNN 可以处理具有空间特征的数据,如图像数据、传感器数据等。
- 应用
:例如在传感器数据的多变量回归预测中,将多个传感器的数据看作具有空间结构的数据,CNN 可以提取传感器数据之间的关联特征,进行回归预测。在图像相关的多变量回归预测中,如预测图像的某些属性(如亮度、对比度等),CNN 可以有效提取图像的特征。
3. Transformer
- 原理
:Transformer 基于注意力机制,不依赖于循环结构,能够并行计算,提高了计算效率。它包含多头注意力层、前馈神经网络层等。多头注意力机制允许模型在不同的表示子空间中捕捉数据的特征,从而更好地处理长序列数据。在多变量回归预测中,Transformer 可以处理具有复杂依赖关系的多变量数据。
- 应用
:例如在多变量时间序列预测中,Transformer 可以根据历史的多个变量数据预测未来的变量值,通过注意力机制关注不同变量之间的关系以及时间序列的长期依赖关系。
4. CNN-GRU(卷积门控循环单元)
- 原理
:结合了 CNN 和 GRU 的优点。首先,CNN 对输入数据进行特征提取,提取数据的空间特征;然后,GRU 处理 CNN 提取的特征,捕捉时间序列中的长期依赖关系。这种组合可以有效处理既具有空间特征又具有时间序列特征的多变量数据。
- 应用
:在交通流量预测中,输入数据可以包括道路图像数据(具有空间特征)和历史交通流量数据(具有时间序列特征)。CNN 先对道路图像数据进行特征提取,GRU 再根据这些特征和历史交通流量数据预测未来的交通流量。
5. Transformer-GRU(变压器门控循环单元)
- 原理
:融合了 Transformer 的注意力机制和 GRU 的门控机制。Transformer 的注意力机制用于捕捉多变量之间的复杂依赖关系,GRU 的门控机制用于处理时间序列数据中的长期依赖关系。这种组合可以在处理多变量时间序列数据时,更好地捕捉数据的特征和依赖关系。
- 应用
:在能源消耗预测中,输入数据可以包括历史能源消耗数据、天气数据、时间信息等多变量。Transformer-GRU 可以通过注意力机制关注不同变量之间的关系,GRU 处理时间序列的动态变化,从而预测未来的能源消耗。
性能比较
- 计算效率
:Transformer 由于其并行计算的特点,在处理大规模数据时具有较高的计算效率;而 GRU 由于循环结构,计算效率相对较低。CNN-GRU 和 Transformer-GRU 结合了两者的特点,计算效率介于两者之间。
- 特征提取能力
:CNN 在处理具有空间结构的数据时,特征提取能力较强;Transformer 在处理具有复杂依赖关系的数据时表现出色;GRU 对于时间序列数据的特征提取有较好的效果。CNN-GRU 和 Transformer-GRU 结合了不同模型的特征提取优势,能够处理更复杂的数据。
- 泛化能力
:Transformer 由于其强大的注意力机制,在处理长序列数据时具有较好的泛化能力;GRU 在处理时间序列数据时也具有一定的泛化能力;CNN 在处理具有空间特征的数据时泛化能力较强。CNN-GRU 和 Transformer-GRU 通过结合不同模型的优势,在多变量回归预测中具有较好的泛化能力。
在多变量回归预测中,选择合适的模型需要根据数据的特点(如是否具有空间特征、时间序列特征等)、计算资源和预测要求等因素综合考虑。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
% 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('data.xlsx');
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇