【LSTM时序预测】基于变分模态麻雀算法优化长短时记忆VMD-SSA-LSTM LSSVM时序时间序列数据预测(含前后对比)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

在当今数据驱动的时代,时间序列数据广泛存在于金融市场、气象监测、工业生产、交通流量等众多领域 。准确的时间序列预测能够为决策制定提供有力支持,例如在金融领域,对股票价格、汇率的精准预测有助于投资者制定投资策略;在工业生产中,对设备运行参数的预测可实现预防性维护,减少停机时间。传统的时间序列预测方法,如 ARIMA、指数平滑法等,在处理复杂非线性、非平稳的时间序列时,往往难以达到理想的预测精度。随着深度学习和智能优化算法的发展,长短时记忆网络(LSTM)、最小二乘支持向量机(LSSVM)等模型因其强大的非线性拟合能力,在时间序列预测中得到广泛应用。然而,LSTM 存在训练效率低、易陷入局部最优,LSSVM 参数选择困难等问题。变分模态分解(VMD)能够将复杂的时间序列分解为多个相对平稳的模态分量,麻雀搜索算法(SSA)具有较强的全局搜索能力。将 VMD、SSA 与 LSTM、LSSVM 相结合,构建 VMD-SSA-LSTM LSSVM 模型,有望提升时间序列预测的准确性和稳定性,为各领域的时间序列分析与预测提供更有效的解决方案。

二、基础理论与算法介绍

2.1 长短时记忆网络(LSTM)

LSTM 是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列数据时存在的梯度消失和梯度爆炸问题。LSTM 通过引入门控机制,包括遗忘门、输入门和输出门,能够有效控制信息的流入、流出和记忆。遗忘门决定从上一时刻细胞状态中保留哪些信息;输入门负责处理当前输入,决定哪些新信息将被添加到细胞状态中;输出门则根据细胞状态和当前输入,决定输出什么值。这种独特的结构使得 LSTM 能够学习时间序列中的长期依赖关系,适用于处理具有复杂时间特征的序列数据。例如在电力负荷预测中,LSTM 可以捕捉到不同日期、不同时间段电力消耗的规律和趋势 。

2.2 最小二乘支持向量机(LSSVM)

LSSVM 是支持向量机(SVM)的一种改进形式,它将传统 SVM 中的不等式约束转化为等式约束,通过求解线性方程组来确定模型参数,降低了计算复杂度。在时间序列预测中,LSSVM 通过非线性映射将输入数据映射到高维特征空间,然后在该空间中构建最优超平面进行回归预测。其预测性能在很大程度上依赖于核函数参数和惩罚因子的选择,合适的参数能够使 LSSVM 更好地拟合数据,提高预测精度。

2.3 变分模态分解(VMD)

VMD 是一种自适应的信号分解方法,其核心思想是将原始信号分解为多个有限带宽的模态分量。该方法通过构建和求解变分模型,使每个模态分量的带宽之和最小化,同时保证各模态分量能够完整地重构原始信号。在处理时间序列数据时,VMD 能够将复杂的非平稳时间序列分解为多个相对平稳、具有不同特征的模态,有助于提取时间序列的内在特征,降低数据的复杂性,为后续的预测模型提供更优质的输入数据。例如在风速时间序列预测中,VMD 可以将包含不同频率成分的风速序列分解,便于分别对各成分进行分析和预测。

2.4 麻雀搜索算法(SSA)

SSA 是一种受麻雀觅食行为启发的智能优化算法。算法中,麻雀分为发现者和追随者两类,发现者负责在广阔的搜索空间中寻找食物资源,追随者则根据发现者的信息进行觅食。此外,算法还引入了警戒机制,当麻雀察觉到危险时,会调整自身位置以躲避风险。在优化问题中,发现者对应于全局搜索,在较大范围内寻找潜在的最优解;追随者进行局部搜索,对发现者找到的解进行细化和优化;警戒机制则确保算法能够跳出局部最优,保持种群的多样性。通过模拟麻雀的这些行为,SSA 能够在解空间中高效地搜索最优解,适用于对模型参数进行优化。

三、VMD-SSA-LSTM LSSVM 模型构建

3.1 模型框架设计

VMD-SSA-LSTM LSSVM 模型主要包括数据预处理、VMD 分解、SSA 优化、LSTM 与 LSSVM 预测四个部分。首先,对原始时间序列数据进行归一化等预处理操作,将数据映射到合适的范围,以提高模型的训练效率和稳定性。然后,利用 VMD 将预处理后的数据分解为多个模态分量。接着,使用 SSA 分别对 LSTM 的网络参数(如隐藏层神经元数量、学习率等)和 LSSVM 的核函数参数、惩罚因子进行优化。最后,将优化后的 LSTM 和 LSSVM 分别对各模态分量进行预测,并将预测结果进行融合,得到最终的时间序列预测值。

3.2 模型训练与参数优化

在模型训练过程中,将分解后的各模态分量数据分为训练集和测试集。对于 LSTM,输入训练集数据,通过反向传播算法更新网络参数,使 LSTM 在训练集上的预测误差最小化;对于 LSSVM,利用训练集数据,在 SSA 优化得到的参数下进行模型训练。在 SSA 优化过程中,将 LSTM 和 LSSVM 在训练集上的预测误差作为适应度函数,引导麻雀群体在参数空间中搜索最优参数组合。经过多次迭代,当适应度值不再显著改善或达到预设的迭代次数时,停止优化,得到最优的 LSTM 和 LSSVM 模型参数。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

[1] 杨赫然,张培杰,孙兴伟,等.基于麻雀算法优化神经网络的螺杆砂带磨削去除深度预测[J].表面技术, 2025, 54(2):182-190.

[2] 朱宗玖,顾发慧.基于优化VMD-SSA-LSTM算法的锂离子电池RUL预测[J].安徽理工大学学报(自然科学版), 2024, 44(2):11-19.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值