混合动力电动车优化调度与建模(发动机,电机,电池组等组件建模)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

在全球能源危机与环保要求日益严苛的大背景下,混合动力电动车(Hybrid Electric Vehicle,HEV)凭借其在降低燃油消耗、减少尾气排放方面的显著优势,成为汽车行业发展的重要方向。HEV 集成了发动机、电机、电池组等多种动力组件,通过对这些组件的协同优化调度,能够实现动力系统效率的最大化和能耗的最小化。然而,HEV 动力系统结构复杂,各组件特性差异大,如何准确对发动机、电机、电池组等进行建模,并在此基础上构建高效的优化调度策略,成为提升 HEV 性能的关键所在。准确的组件建模是优化调度的基础,只有精确掌握各组件的工作特性与运行规律,才能制定出合理的调度方案;而科学的优化调度策略则能充分发挥各组件的优势,实现动力系统的高效运行,这对于推动 HEV 技术发展、增强其市场竞争力具有重要的现实意义。

二、混合动力电动车组件建模

2.1 发动机建模

发动机作为 HEV 的传统动力源,其性能对整车的动力性和经济性有着重要影响。发动机建模通常从热力学、动力学等角度出发,考虑进气、压缩、燃烧、排气等工作过程。在建模过程中,常用的方法有均值模型、准维模型和多维模型。均值模型将发动机视为一个整体,通过输入输出关系描述其工作特性,如根据节气门开度、转速等输入参数,计算发动机的扭矩、功率和燃油消耗率,该模型结构简单、计算速度快,适合用于整车动力系统的实时仿真与优化调度 ;准维模型则基于燃烧过程的物理化学原理,对燃烧室内的过程进行更细致的分析,能够更准确地描述发动机的燃烧特性和排放性能,但计算复杂度相对较高;多维模型通过求解流体力学、传热学和化学反应动力学方程,对发动机内部流场、温度场和浓度场进行详细模拟,可提供丰富的物理信息,但计算量巨大,主要用于发动机的研发设计阶段。在实际应用于 HEV 优化调度时,均值模型因其兼顾准确性和实时性,成为常用选择。通过大量实验数据对模型参数进行标定和优化,可使发动机模型更准确地反映实际工作特性,为优化调度提供可靠依据。

2.2 电机建模

电机在 HEV 中承担着驱动和能量回收的双重角色,其建模需要考虑电磁、机械和热等多方面特性。从电磁角度,基于电机的基本电磁方程,建立电压、电流、磁链之间的关系模型,如在永磁同步电机建模中,通过定子电压方程、磁链方程和转矩方程描述电机的电磁特性;在机械方面,根据牛顿第二定律建立电机的转矩平衡方程,考虑电机转子的转动惯量、负载转矩以及摩擦力矩等因素,描述电机转速和转矩的动态变化;同时,电机在运行过程中会产生热量,影响其性能和寿命,因此还需建立热模型,分析电机的散热过程和温度变化。为了简化模型并满足实时仿真需求,常采用等效电路模型结合机械运动方程的方式对电机进行建模。例如,将永磁同步电机等效为一个包含电阻、电感和反电动势的电路,通过电路方程计算电机的电流和功率,再结合机械方程计算电机的转速和转矩,从而实现对电机工作状态的准确描述,为优化调度中合理分配电机的工作模式(驱动或发电)提供支持。

2.3 电池组建模

电池组是 HEV 储能的核心部件,其性能直接影响车辆的续航里程和动力性能。电池组建模主要包括电化学模型、等效电路模型和经验模型。电化学模型基于电池内部的电化学反应机理,通过求解偏微分方程描述电池内部的物质传输和电化学反应过程,能够精确反映电池的电化学特性,但模型复杂、计算量大,难以满足实时仿真需求;经验模型通过对电池实验数据的拟合建立输入输出关系,如根据电池的充放电电流、电压和温度等数据建立经验公式,该模型简单易用,但通用性较差,不同类型电池需重新拟合;等效电路模型通过电阻、电容等电路元件模拟电池的电气特性,能够较好地反映电池的动态响应和极化现象,且计算复杂度适中,是目前 HEV 电池组建模的常用方法 。在等效电路模型中,常用的有 Rint 模型、Thevenin 模型等,以 Thevenin 模型为例,它由一个理想电压源、一个电阻和一个 RC 网络组成,理想电压源代表电池的开路电压,电阻模拟电池的内部电阻,RC 网络描述电池的极化效应。通过实验数据对模型参数进行辨识和优化,可使电池组模型更准确地模拟电池在不同工况下的工作状态,为优化调度中合理控制电池的充放电过程提供依据,避免过充过放,延长电池寿命。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值