✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
在无人机技术不断革新的当下,非对称多旋翼无人机凭借其独特的结构设计,在诸如复杂地形侦查、特种作业等特殊任务场景中展现出不可替代的优势。然而,非对称结构带来的动力学特性差异,使得其线性控制的建模、仿真与实现充满挑战。本文将系统介绍非对称多旋翼无人机线性控制相关的核心技术,助力深入理解与应用该类型无人机。
一、非对称多旋翼无人机特性分析
(一)结构特点
非对称多旋翼无人机打破了传统对称多旋翼无人机的布局,其旋翼数量、轴距、旋翼旋转方向等参数不再遵循严格的对称规则。例如,可能存在旋翼分布疏密不均,或者部分旋翼尺寸、转速与其他旋翼不同的情况。这种结构设计能够使无人机适应特定的任务需求,如在狭窄空间内灵活转向,或是在执行特定载荷运输任务时,通过调整结构实现更好的重心平衡 。
(二)动力学特性
非对称结构导致无人机在飞行过程中的气动力分布、力矩平衡等动力学特性与对称无人机存在显著差异。由于各旋翼产生的升力和扭矩不对称,无人机在进行平移、旋转运动时,需要更复杂的控制策略来维持稳定。其动力学方程不能简单沿用对称无人机的模型,需充分考虑结构不对称带来的额外影响因素,如非对称气动力矩对姿态控制的干扰等。
二、非对称多旋翼无人机线性控制建模
(一)坐标系建立
为准确描述非对称多旋翼无人机的运动,首先要建立合适的坐标系,通常包括惯性坐标系(地面坐标系)和机体坐标系。惯性坐标系用于确定无人机在空间中的绝对位置和姿态,而机体坐标系则与无人机自身固连,便于分析无人机各部件的受力和运动情况。明确两个坐标系之间的转换关系,是后续建模的基础。
(二)动力学建模
基于牛顿 - 欧拉方程,结合非对称多旋翼无人机的结构特点,构建其动力学模型。在建模过程中,分别分析无人机在平移运动和旋转运动时所受的力和力矩。对于平移运动,考虑重力、各旋翼产生的升力以及空气阻力;对于旋转运动,分析各旋翼扭矩、气动力矩等因素对无人机姿态变化的影响。通过推导得到包含位置、速度、姿态角和角速度等变量的动力学方程,精确描述无人机的运动状态。
(三)线性化处理
由于无人机的动力学模型通常是非线性的,为了便于设计线性控制器,需要对其进行线性化处理。采用泰勒级数展开的方法,在平衡点附近对非线性动力学方程进行线性近似,得到线性化后的状态空间模型。该模型能够反映无人机在小扰动情况下的动态特性,为后续线性控制器的设计提供理论依据。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
本主页CSDN博客涵盖以下领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类