✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
在现代电力系统中,随着大量非线性负荷,如变频器、电弧炉、开关电源等设备的广泛应用,谐波问题日益突出。谐波电流注入电网后,会导致电气设备发热加剧、损耗增加、寿命缩短,还可能引起继电保护装置误动作、通信系统干扰等一系列问题,严重威胁电力系统的安全稳定运行和电能质量。无源谐波滤波器凭借结构简单、成本较低、运行维护方便等优势,成为目前电力系统谐波抑制的常用手段之一。深入研究无源谐波滤波器,对于提升电力系统性能、保障电网安全具有重要的现实意义。
二、无源谐波滤波器基本原理
无源谐波滤波器主要由电力电容器、电抗器和电阻器等无源元件组成。其基本原理基于谐波阻抗特性,利用电感和电容元件在不同频率下呈现的不同阻抗特性,对特定频率的谐波电流产生低阻抗通路,使谐波电流流入滤波器而不注入电网 。例如,对于某次谐波,当滤波器的谐振频率与该次谐波频率相等时,滤波器对该次谐波呈现极低的阻抗,从而将大部分该次谐波电流旁路,实现谐波抑制的目的。
三、无源谐波滤波器类型及特点
3.1 单调谐滤波器
单调谐滤波器是最常用的无源谐波滤波器类型,它针对特定的某次谐波频率进行设计,由一个电容器和一个电抗器串联组成。其优点是结构简单、滤波效果显著,在设计频率下能有效吸收谐波电流;缺点是对频率变化较为敏感,当系统频率发生偏移时,滤波效果会受到较大影响 。
3.2 双调谐滤波器
双调谐滤波器可以同时对两个不同频率的谐波进行滤波,它相当于两个串联的单调谐滤波器并联工作。与两个独立的单调谐滤波器相比,双调谐滤波器可以节省一个电抗器,具有损耗较小、投资成本相对较低的优势,但设计和调试相对复杂 。
3.3 高通滤波器
高通滤波器主要用于抑制高于某一频率的谐波,常见的有二阶、三阶和 C 型高通滤波器。二阶高通滤波器结构简单,但损耗较大;三阶高通滤波器损耗相对较小,但滤波效果稍逊;C 型高通滤波器在基波频率下损耗极小,且对高次谐波有较好的滤波效果,适用于基波无功补偿和高次谐波抑制的场合 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 李康.有源电力滤波器谐波抑制技术研究[D].西安电子科技大学,2011.DOI:10.7666/d.y1866934.
[2] 赵小皓,冯晓云,王利军.电力电子系统的无功功率补偿与谐波抑制研究[J].铁道机车车辆(6):59-61[2025-06-06].DOI:10.3969/j.issn.1008-7842.2007.06.019.
[3] 谢丽娟.船舶电网谐波分析与抑制的仿真研究[D].上海海事大学,2006.DOI:10.7666/d.y1007993.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类