✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在电力系统的稳定运行与经济调度中,无功优化是降低网络损耗、提升电压质量的关键技术手段。IEEE_33 节点系统作为电力系统分析中的经典测试系统,常被用于验证无功优化算法的有效性。教与学算法(Teaching - Learning - Based Optimization Algorithm,TLBO)模拟教师教学和学生学习的过程,具有结构简单、收敛速度快等特点。本文将教与学算法应用于 IEEE_33 节点无功优化问题,旨在探索一种高效、可靠的无功优化求解方案。
一、IEEE_33 节点系统与无功优化问题概述
1.1 IEEE_33 节点系统结构
IEEE_33 节点系统是一个包含 33 个节点、32 条支路的配电网系统,其电压等级为 12.66kV 。系统中涵盖了负荷节点、电源节点等不同类型节点,各节点通过线路相互连接。该系统结构清晰、参数明确,能够较好地模拟实际配电网运行情况,是研究配电网无功优化问题的常用基准模型。
1.2 无功优化问题描述
无功优化的核心目标是在满足电力系统运行约束条件下,通过调整控制变量(如变压器分接头档位、无功补偿装置容量、发电机无功出力等),使系统的有功网损最小化,同时保证各节点电压在允许范围内,提升电力系统的安全性和经济性。在 IEEE_33 节点系统中,无功优化需要综合考虑节点电压约束、支路功率约束、控制变量的上下限约束等,是一个多变量、多约束的非线性优化问题。
二、教与学算法原理
2.1 算法基本思想
教与学算法(TLBO)主要模拟教学过程中教师传授知识和学生学习知识的行为。算法将优化问题的解视为学生,每个学生的学习成绩对应解的目标函数值。算法分为教师阶段和学生阶段:在教师阶段,教师(即当前最优解)通过传授知识,引导学生(其他解)向更好的方向更新;在学生阶段,学生之间相互学习,进一步提升自身的 “学习成绩”,通过不断迭代,逐步逼近最优解。
2.2 算法执行流程
- 初始化种群:随机生成一定数量的初始解(学生),构成初始种群,每个解包含所有控制变量的取值。
- 教师阶段:计算种群中所有个体的目标函数值,找出最优个体作为教师。根据教师的知识水平与种群平均知识水平的差异,对其他个体进行更新,使学生朝着教师的方向学习,更新个体的位置。
- 学生阶段:学生之间随机两两配对,相互学习。若某学生在某一维度上的知识水平高于另一学生,则后者在该维度上向其学习;反之则不进行学习。通过这种方式,进一步优化个体位置。
- 重复迭代:重复教师阶段和学生阶段,直到满足预设的终止条件(如达到最大迭代次数、目标函数值收敛等)。
- 输出结果:输出最终种群中的最优解,即为无功优化问题的近似最优解。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇