百度Apollo规划决策模块学习记录-3 Apollo EM Planner算法




Lecture 6

约束的分类

  • Soft Constraints
    • Decisions
    • Best Trajectory
  • Hard Constraints
    • Traffic Regulations

Apollo EM Planner

这部分在EM Planner的论文中更细致,课程里主要概括了一些核心思路但并不完整。之后有空的话把论文笔记整理出来更细致地理解EM Planner的架构。

  • 例:判断是否换道时,生成本车道和变道两种轨迹,选取成本更低的轨迹。

  • 那么如何生成本车道/变道的最优轨迹呢?这里就作为优化问题来求解,分别用组合优化(DP+QP)的方法生成本车道和变道的最优轨迹,再进一步去评价

  • EM Algorithm 期望最大化算法思想

    迭代优化的思想,即当高维优化空间难以直接搜索时,比如有SLT三个维度,要同时优化这三个维度是困难的,那么先优化SL维度,再利用SL维度的最优解来优化ST维度,再反过来用ST维度的优化结果去优化SL维度。可以不断迭代,算法收敛。

    在无人车上,具体化为

    1. 规划得到SL维度的最优Path
    2. 将动态和静态障碍物投影到最优Path上
    3. 生成ST维度上的Optimal Speed
    4. 下一个周期再该Speed Profile用来生成最优Path
  • 算法的缺点

    迭代算法本质上是贪心算法,只能收敛到Local Optimum,但不一定是全局最优。但一般情况下,局部最优解已经够用了,且局部最优解和全局最优解的差异很小。


优化问题的关键

  • 目标函数
  • 约束条件
  • 解决算法

EM Planner的主要步骤

  1. DP Path

    SL维度上,动态规划得到粗糙Path

  2. QP Path

    SL维度上利用动态规划的结果得到凸空间,再用动态规划的最优解,进行二次规划得到平滑的最优解。

    借助Smoothing Spline,整理目标函数可得二次型的规划问题。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0ic8umwF-1596986071307)(/home/neo/.config/Typora/typora-user-images/image-20200809225448752.png)]

  3. DP Speed

    思路同Path动态规划

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YbDHc9g3-1596986071310)(/home/neo/.config/Typora/typora-user-images/image-20200809225650111.png)]

  4. QP Speed


  • 这里老师提出了一个重要的单靠QP解决问题不可行的原因,QP在非凸空间的解收敛到哪个Local Optimal是不确定的,如果单靠QP求解,控制周期之间的解很可能不一致,这样的车辆行为并不是我们想要的,且很难被控制模块执行。

    而当QP的凸空间构造得当时,由QP的性质,可以保证控制周期间的最优解保持很好的一致性,即帧与帧之间相差非常小。

  • 算法加速,上一控制周期的最优解在下一周期提供给QP作为热启动。


Apollo 无人车规划模块进展

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hQXdoY7q-1596986071312)(/home/neo/.config/Typora/typora-user-images/image-20200809231318436.png)]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值