Lecture 6
约束的分类
- Soft Constraints
- Decisions
- Best Trajectory
- Hard Constraints
- Traffic Regulations
- Traffic Regulations
Apollo EM Planner
这部分在EM Planner的论文中更细致,课程里主要概括了一些核心思路但并不完整。之后有空的话把论文笔记整理出来更细致地理解EM Planner的架构。
-
例:判断是否换道时,生成本车道和变道两种轨迹,选取成本更低的轨迹。
-
那么如何生成本车道/变道的最优轨迹呢?这里就作为优化问题来求解,分别用组合优化(DP+QP)的方法生成本车道和变道的最优轨迹,再进一步去评价
-
EM Algorithm 期望最大化算法思想
迭代优化的思想,即当高维优化空间难以直接搜索时,比如有SLT三个维度,要同时优化这三个维度是困难的,那么先优化SL维度,再利用SL维度的最优解来优化ST维度,再反过来用ST维度的优化结果去优化SL维度。可以不断迭代,算法收敛。
在无人车上,具体化为
- 规划得到SL维度的最优Path
- 将动态和静态障碍物投影到最优Path上
- 生成ST维度上的Optimal Speed
- 下一个周期再该Speed Profile用来生成最优Path
-
算法的缺点
迭代算法本质上是贪心算法,只能收敛到Local Optimum,但不一定是全局最优。但一般情况下,局部最优解已经够用了,且局部最优解和全局最优解的差异很小。
优化问题的关键
- 目标函数
- 约束条件
- 解决算法
EM Planner的主要步骤
-
DP Path
SL维度上,动态规划得到粗糙Path
-
QP Path
SL维度上利用动态规划的结果得到凸空间,再用动态规划的最优解,进行二次规划得到平滑的最优解。
借助Smoothing Spline,整理目标函数可得二次型的规划问题。
-
DP Speed
思路同Path动态规划
-
QP Speed
-
这里老师提出了一个重要的单靠QP解决问题不可行的原因,QP在非凸空间的解收敛到哪个Local Optimal是不确定的,如果单靠QP求解,控制周期之间的解很可能不一致,这样的车辆行为并不是我们想要的,且很难被控制模块执行。
而当QP的凸空间构造得当时,由QP的性质,可以保证控制周期间的最优解保持很好的一致性,即帧与帧之间相差非常小。
-
算法加速,上一控制周期的最优解在下一周期提供给QP作为热启动。