Apollo规划模块:Em Planner算法原理解析(论文研读)

本文深入解析了Apollo自动驾驶系统中的EM Planner算法,详细介绍了算法思想、流程和应用场景。EM Planner通过多车道策略和路径速度迭代处理动态和静态障碍物,确保安全性和驾驶体验。算法迭代优化路径和速度,结合动态规划与二次规划,解决复杂交通场景中的规划问题。文章还探讨了算法在高速公路和城市驾驶中的应用,并对比了轻决策与重决策算法的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、算法概述

1、Apollo框架简述

先来介绍下整体的Pipeline。Apollo开源自动驾驶平台中,高清地图模块提供了每个在线模块都可以访问的高清地图。感知和定位模块提供了必要的动态环境信息,可以在预测模块中进一步用于预测未来的环境状态。运动规划模块考虑所有信息,以生成安全平滑的轨迹,并将其输入车辆控制模块。
在这里插入图片描述
EM planner是基于百度Apollo(开源)的实时运动规划系统。旨在解决工业4级运动规划问题。该规划器以多车道、路径速度迭代、交通规则和决策组合设计的安全性和乘坐体验为目标。

2、Em planer算法概述

系统分层覆盖了多车道和单车道自动驾驶;(1)系统的顶层是一种多车道策略,通过比较并行计算的车道级轨迹来处理车道变换场景。 (2)在车道级轨迹生成器中,它基于Frenet框架迭代求解路径和速度优化问题.(3)对于路径和速度优化,将动态规划DP基于样条曲线QP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

执着且专注

予人玫瑰,手有余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值