图像到BEV转换

如果用于分割,这个任务又可以叫做Cross-view Semantic Segmentation跨视角语义分割,从第一视角的 2D 图像(First-view Observation)得到俯视语义图(Top-down-view Semantic Map)的过程称作跨视角语义分割.如果用于检测,那就是bev感知。

Predicting Semantic Map Representations from Images using Pyramid Occupancy Networks(PON)

提出了一个dense transformer(并非self attention的transformer, 只是MLP结构)的网络结构用于将2D图转换成BEV
https://githubhelp.com/tom-roddick/mono-semantic-maps
code:https://github.com/tom-roddick/mono-semantic-maps
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
https://githubhelp.com/tom-roddick/mono-semantic-maps

Bird’s-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

用到了上一篇方法中的dense transformer
https://zhuanlan.zhihu.com/p/415109656
项目主页: http://panoptic-bev.cs.uni-freiburg.de/
code:https://github.com/robot-learning-freiburg/PanopticBEV
在这里插入图片描述
在这里插入图片描述

Cross-View Semantic Segmentation for Sensing Surroundings(VPN)

在这里插入图片描述
在这里插入图片描述

Orthographic Feature Transform for Monocular 3D(OFT)

https://zhuanlan.zhihu.com/p/60117934
在这里插入图片描述

Lift, Splat, Shoot: Encoding Images From Arbitrary Camera Rigs by Implicitly Unprojecting to 3D

code : https://github.com/nv-tlabs/lift-splat-shoot.git在这里插入图片描述
在这里插入图片描述

MonoLayout: Amodal Scene Layout from a single image

在这里插入图片描述

code:https://github.com/hbutsuak95/monolayout?fileGuid=3X8QJDGGJPXyQgW9

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

code:https://github.com/JonDoe-297/cross-view
在这里插入图片描述

Structured Bird’s-Eye-View Traffic Scene Understanding from Onboard Images

在这里插入图片描述
https://github.com/ybarancan/STSU

Translating Images into Maps

在这里插入图片描述
https://github.com/avishkarsaha/translating-images-into-maps
和Predicting Semantic Map Representations from Images using Pyramid Occupancy Networks思想差不多,图像竖直方向有全局深度信息.

Learning to Look around Objects for Top-View Representations of Outdoor Scenes

在这里插入图片描述

Monocular Semantic Occupancy Grid Mapping with Convolutional Variational Encoder-Decoder Networks

在这里插入图片描述

HDMapNet: An Online HD Map Construction and Evaluation Framework

https://zhuanlan.zhihu.com/p/414420432
在这里插入图片描述
在这里插入图片描述

Cross-view Transformers for real-time Map-view Semantic Segmentation

在这里插入图片描述

https://github.com/bradyz/cross_view_transformers

Enabling spatio-temporal aggregation in Birds-Eye-View Vehicle Estimation

在这里插入图片描述
BEV和Pseudo-Lidar
https://blog.csdn.net/qq_44902479/article/details/125232746

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值