基于 Ziegler-Nichols 算法的 PID 控制参数整定 Matlab 仿真
PID 控制器是一种常用的控制器,其主要应用于工业生产和自动化控制中。PID 控制器采用比例项、积分项和微分项来计算输出信号,以使系统的反馈控制更加精确。PID 控制器的参数设置直接影响到系统的稳定性、灵敏度和响应时间等性能指标。因此,对于 PID 控制器的参数整定非常重要。
Ziegler-Nichols 算法是一种常用的 PID 参数整定方法,其基本思路是通过实验获取系统的临界增益和临界周期两个参数,然后根据这两个参数来确定 PID 控制器的参数。具体来说,Ziegler-Nichols 算法可以分为以下几个步骤:
-
零输入步响应法:先使系统无需控制信号时得到稳定状态(等待一段时间),以此作为系统的零点,当输入非零信号时便可测到系统对输入信号的响应。测量所得数据绘制在坐标图上可以获得步响应曲线。
-
获取临界增益 Ku:改变控制器增益大小,记录此时系统输出波形,直至出现振荡现象。此时的增益大小即为系统的临界增益 Ku。
-
获取临界周期 Tu:测量振荡周期 Tu,即是从一次振荡开始到下一个振荡开始所经过的时间。
-
根据 Ziegler-Nichols 公式计算 PID 参数:通过公式计算得到 Kp、Ki 和 Kd 三个参数。
在 Matla