使用 Conda 安装Jupyter Notebook
conda install -c anaconda jupyter
配置 Jupyter Notebook 远程控制
步骤 1:生成 Jupyter Notebook 配置文件
首先,您需要生成 Jupyter Notebook 的配置文件,这将用于配置远程访问选项。
生成配置文件:
在终端中执行以下命令以生成配置文件:
jupyter notebook --generate-config
生成密钥:
接下来,您需要生成一个密码的 hash 值,以保护 Jupyter Notebook。打开终端并执行以下步骤:
- 启动 IPython:
ipython
- 输入以下 Python 代码以生成密码的 hash 值:
from jupyter_server.auth import passwd
passwd()
输入您希望设置的密码并进行确认。系统将生成密码的 hash 值,将其保存以备后用。
步骤 2:修改配置文件
现在,您需要编辑 Jupyter Notebook 的配置文件以配置远程访问选项。
修改配置文件:
在终端中使用文本编辑器(例如,Vim)打开配置文件:
vim ~/.jupyter/jupyter_notebook_config.py
在文件末尾添加以下配置选项:
c.NotebookApp.open_browser = False
c.NotebookApp.password = 'your_password_hash_here'
c.NotebookApp.port = 8888
c.NotebookApp.allow_remote_access = True
c.NotebookApp.allow_root = True
c.NotebookApp.ip = '*'
c.NotebookApp.open_browser = False
:防止 Jupyter 自动在浏览器中打开。c.NotebookApp.password
:将 ‘your_password_hash_here’ 替换为之前生成的密码的 hash 值。c.NotebookApp.port
:随机选择一个未被使用的端口,用于 SSH 转发。c.NotebookApp.allow_remote_access = True
:允许远程访问。c.NotebookApp.allow_root = True
:允许以 root 用户身份运行 Jupyter Notebook。c.NotebookApp.ip = '*'
:允许来自任何 IP 地址的连接。
步骤 3:运行 Jupyter Notebook
现在,您可以运行 Jupyter Notebook 服务器:
jupyter notebook
步骤 4:远程连接 Jupyter Notebook
在浏览器中输入以下 URL:
http://your_server_ip:8888
your_server_ip
是运行 Jupyter Notebook 服务器的计算机的 IP 地址或域名。8888
是之前配置的端口号。
访问此 URL 后,Jupyter Notebook 将要求您输入之前设置的密码。输入密码后,您将成功远程访问 Jupyter Notebook,以进行数据科学和编程工作。
⚠️****注意
在使用docker配置的服务器中,远程连接的端口号是映射出来的端口号,例如容器内的8888端口映射到1022,那么在浏览器中输入的地址应该是http://your_server_ip:1022
Jupyter Notebook 创建和更换内核
Jupyter Notebook 是一个强大的交互式计算工具,它允许您在同一个笔记本中使用不同的编程语言内核。本文档将指导您如何在 Jupyter Notebook 中创建新内核并在基础环境中更换内核。
步骤 1:在 Conda 中创建新的环境
首先,您需要在 Conda 中创建一个新的 Python 环境,以便在其中安装和配置新内核。
创建新环境:
在终端中运行以下命令来创建一个新的 Conda 环境:
conda create -n myenv python=3.8
替换 myenv
为您希望的环境名称,python=3.8
可以根据您的需求选择其他 Python 版本。
激活新环境:
激活新环境以确保您安装的软件包和内核将与该环境关联。
conda activate myenv
步骤 2:安装 ipykernel 并命名内核
在新环境中,您需要安装 ipykernel
包并为内核命名。
安装 ipykernel:
使用 Conda 安装 ipykernel
包:
conda install ipykernel
为内核命名:
为了在 Jupyter Notebook 中识别内核,您需要为内核命名。请注意,您可以将 myenv
替换为您的环境名称,custom_kernel_name
替换为您希望为内核选择的名称。
python -m ipykernel install --user --name custom_kernel_name
步骤 3:在 Jupyter Notebook 中更换内核
现在,您已经创建了新内核并安装了它,可以在 Jupyter Notebook 中更换内核了。
启动 Jupyter Notebook:
在终端中(base环境)运行以下命令以启动 Jupyter Notebook 服务器:
jupyter notebook
更换内核:
- 在 Jupyter Notebook 中打开或创建一个笔记本。
- 在菜单栏中选择 “Kernel”。
- 在 “Change Kernel” 或 “Switch Kernel” 下拉菜单中,选择您刚刚创建的内核,即
custom_kernel_name
。
现在,您可以在 Jupyter Notebook 中使用新创建的内核运行代码和分析数据。这使您能够轻松地切换和使用不同的编程环境,以满足您的项目需求。
Jupyter Notebook 中使用R内核
Jupyter Notebook 支持多种编程语言,包括 R。下面是如何在 Jupyter Notebook 中创建和更换到 R 内核的步骤。
步骤 1:创建新的 Conda 环境
首先,您需要创建一个新的 Conda 环境,以隔离 R 环境和依赖。
创建新环境:
在终端中运行以下命令以创建新的 Conda 环境,例如,命名为 r_env
:
conda create -n r_env r-essentials r-base
步骤 2:安装IRkernel
激活新环境:
激活新创建的环境:
conda activate r_env
安装 IRkernel:
安装 IRkernel 包,它将使 R 内核可用于 Jupyter Notebook:
conda install -c conda-forge r-irkernel
步骤 3:在 Jupyter Notebook 中注册 R 内核
在 Jupyter Notebook 中注册 R 内核,以便您可以在笔记本中使用它。
激活新环境:
确保您在之前创建的 Conda 环境中:
conda activate r_env
启动 R:
在终端中运行 R:
R
在 R 中运行以下命令:
IRkernel::installspec(user = FALSE)
这将在 Jupyter Notebook 中注册 R 内核。
步骤 4:在 Jupyter Notebook 中更换 R 内核
现在,您可以在 Jupyter Notebook 中切换到 R 内核。
启动 Jupyter Notebook:
在终端(base环境)中运行以下命令以启动 Jupyter Notebook 服务器:
jupyter notebook
创建或打开笔记本:
在 Jupyter Notebook 用户界面中,创建新的笔记本或打开已存在的。
更换内核:
在笔记本的顶部菜单中,选择 “Kernel”,然后在 “Change Kernel” 或 “Switch Kernel” 下拉菜单中,选择 “R” 或其他已注册的 R 内核。
现在,您可以在 Jupyter Notebook 中使用 R 内核运行 R 代码和分析数据。这使您能够在 Jupyter 中结合多种编程语言来进行数据分析和编程工作。
注意事项
一般建议先安装mamba方便安装包
安装了mamba之后可以用mamba替代conda命令
conda install -c conda-forge mamba
conda install -c "conda-forge/label/broken" mamba
conda install -c "conda-forge/label/cf202003" mamba
conda install -c "conda-forge/label/mamba-alpha" mamba
注册 R 内核的时候出现的问题
报错
> IRkernel::installspec()
Error in IRkernel::installspec() :
jupyter-client has to be installed but "jupyter kernelspec --version" exited with code 127.
In addition: Warning message:
In system2("jupyter", c("kernelspec", "--version"), FALSE, FALSE) :
error in running command
解决方法
安装jupyter-client
conda install -c conda-forge jupyter_client