CATIA入门操作——为什么我的实体看起来大小不对,好像是近大远小

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

引出

CATIA入门操作——为什么我的实体看起来大小不对,好像是近大远小


CATIA视图渲染的模式

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

总结

CATIA入门操作——为什么我的实体看起来大小不对,好像是近大远小


其他内容

发生肾么事了??

鼠标中键旋转不了

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

解决:特征树不显示参数关系

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我的窗口去哪了?

插曲:草图工具的调出

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

插曲:颜色工具栏显示

如果没有看到能更改颜色的工具栏,则点击如下
在这里插入图片描述

弹窗警告

警告:创建约束是临时的

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

操作技巧

技巧:快速隐藏不相关元素

快速隐藏不相关的元素

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传


异形弹簧

新建几何体

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

草图编辑,画一条样条线

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

进行扫掠,圆心和半径

在这里插入图片描述

画出曲面上的螺旋线

定义直线,选择曲线的角度/法线

在这里插入图片描述

在曲线上创建点

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

支持面选择扫掠面,角度7度,终点设置大一点,选中支持面上的几何图形

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

再次选择扫掠,圆心和半径

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

双击修改,调整一下样条曲线

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

其他

自定义信号和槽

1.自定义信号

写到signals下
返回void
需要声明,不需要实现
可以有参数,可以重戟

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.自定义槽

返回void
需要声明,也需要实现
可以有参数,可以重载
写到public slot下或者public或者全局函数

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.建立连接

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

// 老师饿了,学生请吃饭
connect(te,&Teacher::hungry,st,&Student::treat);

4.进行触发

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

自定义信号重载

当自定义信号和槽出现重载
8.1 需要利用还数指针明确指向函数的地址·
8.2void(Teacher::tsignal )QString )=&Teacher::hungry;
8.3 QString转成char *
8.3.1.ToUtf80转为QByteArray
8.3.2.Data0转为Char *
8.4信号可以连接信号
8.5断开信号disconnect

带参数的

    void (Teacher::*teacherSignal)(QString) = &Teacher::hungry;
    void (Student::*StudentSlot)(QString) = &Student::treat;

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

void Student::treat(QString foodName){
    // QString -> char * 先转成QByteArray(.toUtf8())  再转成Char* ()
    qDebug() << "请老师吃。。。" << foodName.toUtf8().data();
}

按钮触发

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

    // 用一个按钮调用下课
    QPushButton *btn = new QPushButton("下课了",this);

    // 重置窗口daxiao
    this->resize(600,400);

    connect(btn,&QPushButton::clicked,this,&Widget::classIsOver);

信号触发信号

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

    // 无参的信号和槽连接
    void (Teacher::*teacherSignal2)(void) = &Teacher::hungry;
    void (Student::*StudentSlot2)(void) = &Student::treat;
    connect(te,teacherSignal2,st,StudentSlot2);

    // 信号连接信号
    connect(btn,&QPushButton::clicked,te,teacherSignal2);

断开信号disconnect

拓展

1、信号是可以连接信号
2、一个信号可以连接多个槽函数
3、多个信号可以连接同一个糟函数
4、信号和槽函数的参数必须类型一一对应
5、信号和槽的参数个数是不是要一致?信号的参数个数可以多余槽函数的参数个数

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

connect(信号的发送者,发送的信号signal信号),信号接受者,槽函数SLOT)
优点:参数直观
缺点:编译器不会检测爸数类型:

lambda表达式

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传在这里插入图片描述

在这里插入图片描述

    [=](){
        btn->setText("aaa");
    }();

返回值

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

    int ret = []()->int{return 1000;}();
    qDebug() << "ret = " << ret;

mutable修饰

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

    QPushButton *myBtn1 = new QPushButton(this);
    QPushButton *myBtn2 = new QPushButton(this);
    myBtn1->move(100,100);
    int m = 10;
    connect(myBtn1,&QPushButton::clicked,this,
            [m]()mutable {m=100+10;qDebug()<< m;});
    connect(myBtn2,&QPushButton::clicked,this,
            [=](){qDebug()<<m;});
    qDebug() << m;

案例

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

    QPushButton * btnClose = new QPushButton;
    btnClose->setText("close");
    btnClose->move(100,0);
    btnClose->setParent(this);
    connect(btnClose,&QPushButton::clicked,this,
            [=](){
        btnClose->setText("关闭");
        emit te->hungry("娃哈哈");
//        this->close();
    });
yolov8多尺度特征融合模块是一种用于目标检测的网络模块,用于提高检测准确性和多尺度目标检测的能力。它在yolov7的基础上进行了改进和优化。 该模块的核心思想是通过对不同层级特征进行融合,从而充分利用图像中不同尺度的信息进行目标检测。具体来讲,它引入了多尺度融合池化层和多尺度反卷积层。 多尺度融合池化层通过将不同层级的特征图进行池化操作,使得它们具有相同的尺度。这样一来,不同层级的特征图就可以直接进行特征融合操作,使得网络能够更好地捕捉到不同尺度目标的特征。 多尺度反卷积层则通过上采样操作,将低分辨率的特征图恢复到原始图像的尺度。这样一来,网络就可以从不同层级的特征图中获取更为细粒度的信息,提高目标检测的精确度。 此外,yolov8多尺度特征融合模块还采用了跳跃连接的方式,将多个层级的特征图进行连接,从而进一步提高检测性能。跳跃连接可以帮助网络更好地处理特征图中的细节信息,提高目标的定位能力。 总的来说,yolov8多尺度特征融合模块通过对不同层级特征的融合和利用,提高了目标检测的性能和多尺度检测的能力。通过引入多尺度融合池化层、多尺度反卷积层和跳跃连接等技术手段,它能够更好地捕捉到不同尺度目标的特征,提高检测的准确性和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arya's Blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值