交叉注意力融合2024创新方案汇总,附配套模块和代码

本文探讨了交叉注意力融合在深度学习中的重要性,介绍了六个关键技术成果,包括端到端的图像融合方法、多光谱目标检测、点云分割、多模态视觉Transformer等。这些研究展示了如何通过交叉注意力机制提升模型处理复杂任务的能力,并在各自领域展现了优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多模态学习和注意力机制是当前深度学习研究的热点领域之一,而交叉注意力融合作为这两个领域的结合点,具有很大的发展空间和创新机会。

作为多模态融合的一个重要组成部分,交叉注意力融合通过注意力机制在不同模块之间建立联系,促进信息的交流和整合,从而提升了模型处理复杂任务的能力,展现出其在多模态学习和聚类分析等领域的强大优势。

本文盘点交叉注意力融合相关的13个技术成果,包含2024年最新的研究,这些模块的来源文章以及代码我都整理了,希望能给各位的论文添砖加瓦。

论文和模块代码需要的同学看文末

1.Rethinking Cross-Attention for Infrared and Visible Image Fusion

方法:本文提出了一种端到端的ATFuse网络,用于融合红外图像。通过在交叉注意机制的基础上引入差异信息注入模块(DIIM),可以分别探索源图像的独特特征。同时,作者还应用了交替公共信息注入模块(ACIIM),以充分保留最终结果中的公共信息。为了训练ATFuse,作者设计了一个由不同像素强度约束组成的分割像素损失函数,以在融合结果中达到纹理细节和亮度信息的良好平衡。

创新点:

  • 提出了一种端到端的ATFuse网络,用于融合IV图像。在多个数据集上进行的大量实验表明,我们提出的ATFuse方法具有良好的效果和泛化能力。

  • 基于交叉注意机制提出了一种差异信息注入模块(DIIM)。通过这个DIIM,可以分别探索源图像的独特特征。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值