我在Mac上部署了阿里开源Qwen3,这3个玩法让我上头

五一回老家那会,和发小吃了个饭,聊到了现在的 AI。

发小说看我玩 AI 玩的挺疯的,也想用在工作中提效,可公司电脑不让联网。

这一下就把我拉回到了数年前,在讯飞某保密项目中无网干撸代码的情形。

这真是太痛苦了。

img

为了让发小能在工作中用到 AI,我尝试教他本地部署最近很火的 Qwen3。

并发现了下面 3 种有趣实用的玩法,该说不说,Qwen3 确实让人上头。

img

经过一番折腾,发现果然官方说的“Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。”,诚不欺我。

img

我的 Mac 部署的是最新的 Qwen3-8b,如果配置再好点,搞个 14b,那效果又上一个层次了。

不过在介绍本地部署和我的几个实践之前,觉得还是有必要和大家先聊聊 Qwen3。

后面会介绍如何本地部署 Qwen3 以及 3 大玩法。

Qwen3 是阿里在上个月底发布的新一代开源大语言模型系列,属于通义千问(Qwen)家族的最新一代模型。

短短半个多月,就已经在 GitHub 上获得了可怕的 21.1 k 的 star。

img

牛逼,我的开源项目 PmHub 快一年了也才三百多个 star。

还有一个很让我意外的新闻,国际权威媒体日本经济新闻(NIKKEI)4月公开的AI模型评分榜,阿里的通义千问在113个模型中排名第6,是排名第一的开源模型

img

据说,日本企业中得分最高的模型ABEJA-Qwen2.5-32B正是基于千问开发,日经媒体官方甚至也表示:千问已经成为了日本AI开发的基础

写到这里的时候,我其实是有些热泪盈眶的,忽然想起钱学森归国时说过的话:"手里没剑和有剑不是一回事

Qwen3 目前能支持 119 种语言,还能支持一些地方语言。

img

这个其实意义还蛮大的,别看 AI 这么火,但还是很多国家并没有技术能力去开发自己语种的 AI 大模型。

Qwen3 的开源,直接让他们有了可以依赖的开源模型。

img

可以看到的是,不止是日本,通义千问已经成为多国AI开发基础

比如这位国外的 X 老哥基于Qwen/Qwen2-72B 开发了个用法语回答问题的机器人。

img

还有这个日本老哥(或是老姐?)用 Qwen3-8 B 进行日语微调。

img

我发现,在 X 上,对 Qwen3 大家还是相当认可的,国外博主都在争相报道。也难怪 GitHub 飙升的这么快。

突然感觉,这一幕似成相识,这不咱们这边蹲OpenAI的既视感吗?

在墙外人的眼中,它好像真是香饽饽。

很多人好奇为啥不是 DeepSeek?从数据来看,DeepSeek 的部署成本还是相对高了,Qwen3 的成本很低,旗舰模型235B参数部署成本几乎只要DeepSeek-R1的三分之一

而且 Qwen3 是一个开源的混合推理模型,能够在思考模式和非思考模式下自由切换,可以帮助在成本效益和推理质量之间实现更优的平衡。

img

除此之外,Qwen3 在 Agent 能力上表现很出色,模型底层天然支持MCP协议。

这就很舒服了呀,也难怪那么人选择作为 AI 开发基础。

好啦,如果想更多了解,大家可以通过以下地址了解和体验 Qwen3:

Qwen Chat:https://chat.qwenlm.ai
通义 APP:https://www.tongyi.com/
GitHub:https://github.com/QwenLM/Qwen3

当然你也可以向苍何一样本地部署个小模型 Qwen3,玩一玩,还可以进行微调。

下面我们沉浸式体验下。

本地部署Qwen3

这里我依旧使用 Ollama 来部署。

在 Ollama 选择 Models,找到 qwen3:

img

选择对应尺寸参数,我的 Mac 最多支撑 8 b 了。

具体计算大家可以参考这个公式:模型所需GPU内存大小≈模型大小×1.2。
我的 mac 是 16 G,理论上能跑 8 b。

img

复制这个命令,本地终端执行。

img

一共 5.2 G,偷偷看了一眼电脑剩余空间,留下了不争气的泪水。

img

复制命令后,慢慢等他下载模型,等就好了。

img

部署完后,你就可以直接和他对话。

img

但我想没人会直接这么完。通常会结合具体的使用场景来搞。

下面是一些我觉得本地部署模型能给我们实际带来的一些帮助 case。

本地部署数据隐私可以保护,而且可以针对性的做微调,做 RAG。

知识库

这里我用 Cherry Studio 做了 3 个知识库,把相应的数据导入。

img

然后在模型这里选择刚部署的 Qwen3,就可以实现基于知识库的提问了。比如我的知识库里面有之前自己写的 rocketmq 专栏,他都能给我快速找到。

img

基于微信读书笔记进行特定语句提问以及总结。

img

整体效果我体验下来是比之前要好很多的。不过知识库不能太大,不能小模型也抵不住。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 如何在Mac上本地部署Qwen3大语言模型 要在Mac上本地部署Qwen3大语言模型,可以选择多种方法,包括但不限于Ollama方式、vLLM方式以及直接使用GGUF格式的单文件模型。以下是详细的实现方案: #### 方法一:通过Ollama方式进行本地部署 Ollama是一个轻量级工具,能够方便地管理和运行大型语言模型。其主要特点是可以简化模型加载过程,并支持多个模型的同时运行。 1. **安装Ollama** 使用Homebrew安装Ollama: ```bash brew install ollama ``` 2. **下载Qwen3模型** Ollama提供了便捷的命令行接口用于下载和管理模型。执行以下命令以获取Qwen3模型: ```bash ollama pull qwen3-7b-instruct-gguf ``` 3. **启动模型服务** 启动Ollama服务器并将模型加载到内存中: ```bash ollama run qwen3-7b-instruct-gguf ``` 此时可以通过HTTP API或CLI与模型交互[^4]。 --- #### 方法二:基于vLLM框架进行本地部署 vLLM是一种高效的推理引擎,特别适合高性能需求的场景。它支持CPU和GPU加速模式。 1. **准备环境** 确保已安装Python 3.8及以上版本。然后创建虚拟环境并激活: ```bash python -m venv env_vllm source env_vllm/bin/activate ``` 2. **安装依赖项** 卸载旧版vLLM和PyTorch(如果有),再按照官方指南重新安装适用于CPU的版本: ```bash pip uninstall vllm torch -y pip install -r https://raw.githubusercontent.com/vllm-project/vllm/main/requirements-cpu.txt VLLM_TARGET_DEVICE=cpu pip install git+https://github.com/vllm-project/vllm.git ``` 3. **下载Qwen3模型权重** 访问魔搭社区或其他可信资源站点,下载对应于Qwen3的GGUF格式模型文件[^2]。假设目标路径为`~/models/qwen3-7b-instruct-gguf`. 4. **编写启动脚本** 创建一个简单的Python脚本来初始化和服务化模型: ```python from vllm import LLM, SamplingParams llm = LLM(model="path/to/qwen3-7b-instruct-gguf", dtype="float16") sampling_params = SamplingParams(temperature=0.8, top_p=0.95) output = llm.generate(["你好!"], sampling_params=sampling_params) print(output[0].outputs[0].text) ``` 5. **测试模型功能** 运行上述脚本验证是否成功调用了Qwen3模型生成回复[^3]。 --- #### 方法三:利用Docker容器化技术 对于追求一致性和可移植性的开发者来说,采用Docker镜像是另一种可行的选择。 1. **拉取基础镜像** 执行如下指令从远程仓库提取预先构建好的镜像: ```bash docker pull registry.docker-cn.com/library/python:3.10-slim-buster ``` 2. **复制模型至容器内部** 将之前下载完毕的Qwen3 GGUF文件拷贝进去: ```dockerfile COPY ./qwen3-7b-instruct-gguf /opt/app/ WORKDIR /opt/app/ ``` 3. **定义入口点** 编写小型应用程序作为主进程负责接收请求并向用户提供响应结果。 --- ### 总结 以上三种途径各有优劣之处,具体选用哪一种取决于实际应用场景和个人偏好。如果倾向于简单快捷的操作流程推荐尝试Ollama;而当面临更高性能指标要求时则应优先考虑vLLM解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值