yolov8图像舌苔诊断数据集分割检测

YOLO 分割可视化 Notebook 文档

概述

本 Notebook 提供了使用 YOLOv11 模型执行图像分割任务并利用 Matplotlib 实现结果可视化的完整流程。主要内容包括:

  • 加载预训练 YOLO 模型并执行图像分割推理
  • 使用 OpenCV 库读取和处理输入图像数据
  • 解析模型输出的分割多边形数据并使用 Matplotlib 实现yolo_tongue_coating专业可视化
    在这里插入图片描述

文件结构与核心实现

1. 运行环境依赖

必需安装以下 Python 库:

  • OpenCV (cv2):图像处理核心库
  • NumPy (numpy):科学计算基础包
  • Matplotlib (matplotlib.pyplot):数据可视化工具
  • Ultralytics (ultralytics):YOLO 模型接口

安装指令:

pip install opencv-python numpy matplotlib ultralytics

在这里插入图片描述

2. YOLO 模型加载与推理

示例代码展示模型加载和推理过程:

from ultralytics import YOLO

# 初始化模型(需替换为实际权重路径)
model = YOLO(r"runs\\segment\\train\\weights\\best.pt")  
# 指定输入图像(需替换为实际图像路径)
image_path = r"test\\S__102228039.jpg"                   
# 执行预测               
results = model.predict(source=image_path)
result = results[0]  # 获取首张图像预测结果

关键参数说明:

  • best.pt:训练完成的模型权重文件
  • image_path:待分割的输入图像路径
  • results:存储模型预测结果的容器
    在这里插入图片描述

模型性能评估

1. 基础指标

  • 处理图像总量:300 张
  • 平均交并比(IoU):0.9547
  • 平均 Dice 系数:0.9766

2. 分类性能

类别精确率召回率F1 分数样本数
背景0.990.990.99103,634,498
前景0.980.980.9829,075,902
汇总指标
准确率0.99132,710,400
宏平均0.990.990.99132,710,400
加权平均0.990.990.99132,710,400

3. 性能总结

  • 精确率:前景/背景区分准确率达 98-99%
  • 召回率:目标区域覆盖率 98-99%
  • F1 分数:综合评估指标 98-99%
  • 整体准确率:99% 的像素级分类准确率

该模型在各类分割任务中均表现出色,适合需要高精度分割的应用场景。

使用指南

  1. 环境准备
    确保已安装所有依赖库:

    pip install opencv-python numpy matplotlib ultralytics
    
  2. 路径配置
    替换以下文件路径:

    • 模型权重:best.pt
    • 输入图像:image_path
  3. 执行流程
    运行 Notebook 后可获得:

    • 原始输入图像
    • 叠加分割结果的可视化图像(支持轮廓显示或填充模式)

数据集资源

医学图像数据集推荐

  1. 舌苔诊断数据集

    • 标注格式:JSON(包含多边形顶点坐标)
    • 图像规格:512×512 标准尺寸
    • 标签类型:多种舌苔分类(黑苔/地图舌/紫苔等)
  2. TongeImageDataset

    • 数据量:300 组
    • 内容组成:原始图像 + 对应掩码图
  3. 口腔癌图像库

    • 数据规模:87 例癌变舌像 + 44 例正常舌像
    • 应用方向:口腔癌检测研究
  4. 齿痕舌专题数据集

    • 数据组成:546 例齿痕舌 + 704 例正常舌
    • 特色:专为中医舌诊设计

这些数据集适用于:

  • 中医舌象智能分析
  • 口腔病变检测
  • 医学图像分割算法开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值