🔷 一、研究背景与项目意义
中医通过“望闻问切”来综合判断患者的身体状况,其中“望舌”即观察舌象是一项重要手段,尤其是舌苔(舌表面附着物)的颜色、厚度、润泽度,对脏腑功能的反映尤为明显。
传统舌苔诊断存在以下问题:
- 高度依赖医生经验,主观性强;
- 缺乏统一量化标准,难以标准化;
- 信息数字化不足,难以接入现代医疗系统。
因此,开发一个基于深度学习的舌苔图像识别系统,实现舌象的客观、快速、准确判断,有望提升中医的智能化和可视化水平。
🔷 二、YOLOv5简介与舌苔适配分析
YOLOv5是由Ultralytics发布的目标检测算法,以其速度快、精度高、部署便捷等优点被广泛应用。
适配分析: 舌苔图像中的关键检测目标包括:
- 舌体整体区域(用于ROI提取)
- 舌苔颜色特征(如白苔、黄苔、灰苔等)
- 舌苔分布区域(舌尖/舌根/舌边等)