声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~
目录
肺功能优化算法(LPO)是一种新型的元启发式算法(智能优化算法),灵感来源于人体肺的规律性和智能性能,LPO利用无约束优化函数CEC2005和CEC2014以及工程设计优化问题进行了实验,表明LPO在处理这些优化问题方面表现出色!该成果由Mojtaba Ghasemia等人于2024年2月发表在SCI人工智能一区顶刊《Computer Methods in Applied Mechanics and Engineering》上!
由于发表时间较短,你先用,你就是创新!
原理简介
我们应用肺生物学的见解来开发一种先进的算法。肺是人体的一个重要器官,负责过滤我们周围空气中的氧气,并有效地将其输送到循环系统。此外,它还负责从循环系统中去除二氧化碳,并在气体交换过程中将其释放到空气中。肺部的每一次呼吸都是对气体最优化交换的一个自然过程,它能够在不同的运动强度和氧气需求下,精准调节氧气和二氧化碳的交换。
LPO从一个初始的种群或气团Mi开始,其中i=1,2,…,Npop,它进入身体功能循环的血液并创造一个新的种群。这个初始种群是在目标问题范围的两个最大值(Mmax)和最小值(Mmin)之间随机生成的。这种主要的种群与血液团块或颗粒的作用相同。
一、空气进出肺的入口和出口
如前所述,我们选择了肺的RC模型,考虑到建模参数,我们假设进入肺的气团的位置如下,在优化学科中,这是初始种群的新位置:
上式中,D为问题的维数,Iter为算法的当前迭代次数。
二、二氧化碳与空气分离同时血液在静脉中流动
由肺从空气中分离出来的氧气被带入血液。这个质量Mi等价于问题空间中人口的移动。氧气进入血液的运动可以模拟为式(12)。也就是说,血液通过施加在它身上的压力而运动。它从施加更大压力的那一边,也就是适应性值更高的那一边,移动到施加更小压力的那一边,也就是适应性值更低的那一边。
式(13)中,Kij支配着第i个血团即Mi在动脉内的运动方向。在每个循环周期中,αi是介于0到1之间的一个数字,它决定了移位的值,并趋向于一个更优的量。
三、从血液中分离二氧化碳
如下表所示,我们将此动作建模为群体组成和交叉,如下所示:
式(14)中,si为似然值,由于肺对血液的净化作用,随着每次呼气而减小,与吸气、呼气次数Ne呈反比关系:
其中,ne1的值由用户指定。
如前所述,吸气和呼气在每次迭代中执行Ne次。如果期望的质量在每个结合处都有所提高,它就会取代当前位置。也就是说,如果Mnew3ij位置优于Mi,则将其替换。值得注意的是,在第二次吸气和呼气后,公式(16)中使用了Mnew3ij:
这个优化周期将在设定次数的迭代或脉冲中继续进行。
算法伪代码
为了使大家更好地理解,这边给出算法伪代码,非常清晰!
如果实在看不懂,不用担心,可以看下代码,再结合上文公式理解就一目了然了!
性能测评
原文作者利用无约束优化函数CEC2005和CEC2014以及工程设计优化问题进行了实验。这些问题与文献中提出的许多当代算法进行了比较。结果表明,LPO在处理这些优化问题方面表现出色,并显示出解决各种现代优化挑战的潜力。
这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,进行展示!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!
参考文献
[1]Ghasemi M, Zare M, Zahedi A, et al. Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO)[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116582.
完整代码
如果需要免费获得图中的完整测试代码,只需点击下方小卡片,后台回复关键字:
LPO
也可点击下方小卡片,后台回复个人需求(比如LPO-BP)定制肺功能优化模型(看到秒回):
1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、TCN、BiTCN、ESN等等均可~
2.组合预测类:CNN/TCN/BiTCN/DBN/Adaboost结合SVM/RVM/ELM/LSTM/BiLSTM/GRU/BiGRU/Attention机制类等均可(可任意搭配非常新颖)~
3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVF-EMD、CEEMDAN、ICEEMDAN、SVMD等分解模型均可~
4.其他:机器人路径规划、无人机三维路径规划、DBSCAN聚类、VRPTW路径优化、微电网优化、无线传感器覆盖优化、故障诊断等等均可~
5.原创改进优化算法(适合需要创新的同学):2024年的肺功能优化算法LPO以及麻雀SSA、蜣螂DBO等任意优化算法均可,保证测试函数效果!
更多免费代码链接:更多代码链接