1.背景
2024年,M Ghasemi受到人体肺部的规律和智能表现启发,提出了肺功能优化算法(Lung Performance-based Optimization, LPO)。
2.算法原理
2.1算法思想
LPO灵感来源于人体肺部的规律和智能表现,其借鉴了呼吸系统的复杂机制和适应能力。肺部在氧气交换中表现出了非凡的效率,展示了其功能的高度优化。
参数意义
2.2算法过程
LPO数学模型
肺是人体内的一个关键器官,负责从周围空气中过滤氧气,并有效地将其输送到循环系统。呼吸系统可以进行电气建模,评估肺功能最广泛使用的方法是强迫振荡技术。该技术涉及在呼吸系统入口测量空气压力和气流速率,这使得可以计算其电阻抗。通过扩散在组织片中传递的气体体积遵循菲克定律:
V
→
=
A
K
d
Δ
P
→
(1)
\overrightarrow{V}=\frac{AK}{d}\overrightarrow{\Delta P}\tag{1}
V=dAKΔP(1)
其中,ΔP为压力梯度,A为横截面积,d为薄板厚度,K为气体扩散系数。各参数表述为:
Δ
P
=
V
×
(
R
2
+
(
1
2
π
×
f
r
×
R
C
)
2
×
sin
(
2
π
×
f
r
×
t
)
×
sin
(
2
π
×
f
r
×
t
+
θ
)
)
θ
=
tan
−
1
(
1
2
π
×
f
r
×
R
C
)
(2)
\begin{aligned} &\Delta P=V\times\left(\sqrt{R^{2}+\left(\frac{1}{2\pi\times fr\times RC}\right)^{2}}\times\sin(2\pi\times fr\times t)\times\sin(2\pi\times fr\times t+\theta)\right) \\ &\theta=\tan^{-1}\left({\frac{1}{2\pi\times fr\times RC}}\right) \end{aligned}\tag{2}
ΔP=V×
R2+(2π×fr×RC1)2×sin(2π×fr×t)×sin(2π×fr×t+θ)
θ=tan−1(2π×fr×RC1)(2)
氧气摄入过程
肺部从空气中分离出的氧气带入血液中,血液质量Mi等同于问题空间中的个体移动。血液通过施加在其上的压力来移动,因此氧气从施加更多压力的一侧移动到施加较少力的一侧,即从较好的适应度值移向较弱的适应度值:
M
i
n
e
w
,
2
=
M
i
n
e
w
,
1
+
K
i
1
×
α
i
×
(
M
i
n
e
w
,
1
−
M
1
)
+
K
23
×
α
i
×
(
M
3
−
M
2
)
(3)
M_i^{new,2}=M_i^{new,1}+K_{i1}\times\alpha_i\times\left(M_i^{new,1}-M_1\right)+K_{23}\times\alpha_i\times\left(M_3-M_2\right)\tag{3}
Minew,2=Minew,1+Ki1×αi×(Minew,1−M1)+K23×αi×(M3−M2)(3)
Kij 控制着第 i 个血液质量Mi,在动脉中的移动方向:
K
i
j
=
s
i
g
n
(
f
(
M
j
)
−
f
(
M
i
)
)
=
{
1
i
f
f
(
M
i
)
<
f
(
M
j
)
−
1
i
f
f
(
M
i
)
>
f
(
M
j
)
0
i
f
f
(
M
i
)
=
f
(
M
j
)
(4)
\left.K_{ij}=sign\big(f\big(M_j\big)-f(M_i)\big)=\left\{\begin{array}{c}1 if f(M_i)<f\big(M_j\big)\\-1 if f(M_i)>f\big(M_j\big)\\0 if f(M_i)=f\big(M_j\big)\end{array}\right.\right.\tag{4}
Kij=sign(f(Mj)−f(Mi))=⎩
⎨
⎧1iff(Mi)<f(Mj)−1iff(Mi)>f(Mj)0iff(Mi)=f(Mj)(4)
排出二氧化碳过程
论文将此动作建模为群体组成和交叉:
其中,si为似然值,由于肺对血液的净化作用,该似然值随着每次呼气而减小,与吸气呼气次数N呈反比关系:
s
i
=
r
a
n
d
N
e
(5)
s_i=\frac{rand}{N_e}\tag{5}
si=Nerand(5)
在每次迭代中,吸气和呼气执行 Ne 次。如果在每个节点期望的质量有所提高,它将取代当前位置:
M
i
n
e
w
,
1
=
M
i
+
M
i
j
n
e
w
,
3
×
(
R
i
2
+
(
1
2
π
×
f
r
×
R
i
C
i
)
2
×
sin
(
2
π
×
f
r
×
t
)
×
sin
(
2
π
×
f
r
×
t
+
θ
i
)
)
(6)
M_i^{new,1}=M_i+M_{ij}^{new,3}\times\left(\sqrt{R_i^2+\left(\frac{1}{2\pi\times fr\times R_iC_i}\right)^2}\times\sin(2\pi\times fr\times t)\times\sin(2\pi\times fr\times t+\theta_i)\right)\tag{6}
Minew,1=Mi+Mijnew,3×
Ri2+(2π×fr×RiCi1)2×sin(2π×fr×t)×sin(2π×fr×t+θi)
(6)
伪代码
3.结果展示
迭代次数20w次仍未收敛🤣
4.参考文献
[1] Ghasemi M, Zare M, Zahedi A, et al. Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO)[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116582.