SCI一区TOP|肺功能优化算法(LPO)原理及实现【免费获取Matlab代码】


1.背景

2024年,M Ghasemi受到人体肺部的规律和智能表现启发,提出了肺功能优化算法(Lung Performance-based Optimization, LPO)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

LPO灵感来源于人体肺部的规律和智能表现,其借鉴了呼吸系统的复杂机制和适应能力。肺部在氧气交换中表现出了非凡的效率,展示了其功能的高度优化。
在这里插入图片描述

参数意义

在这里插入图片描述

2.2算法过程

LPO数学模型

肺是人体内的一个关键器官,负责从周围空气中过滤氧气,并有效地将其输送到循环系统。呼吸系统可以进行电气建模,评估肺功能最广泛使用的方法是强迫振荡技术。该技术涉及在呼吸系统入口测量空气压力和气流速率,这使得可以计算其电阻抗。通过扩散在组织片中传递的气体体积遵循菲克定律:
V → = A K d Δ P → (1) \overrightarrow{V}=\frac{AK}{d}\overrightarrow{\Delta P}\tag{1} V =dAKΔP (1)
其中,ΔP为压力梯度,A为横截面积,d为薄板厚度,K为气体扩散系数。各参数表述为:
Δ P = V × ( R 2 + ( 1 2 π × f r × R C ) 2 × sin ⁡ ( 2 π × f r × t ) × sin ⁡ ( 2 π × f r × t + θ ) ) θ = tan ⁡ − 1 ( 1 2 π × f r × R C ) (2) \begin{aligned} &\Delta P=V\times\left(\sqrt{R^{2}+\left(\frac{1}{2\pi\times fr\times RC}\right)^{2}}\times\sin(2\pi\times fr\times t)\times\sin(2\pi\times fr\times t+\theta)\right) \\ &\theta=\tan^{-1}\left({\frac{1}{2\pi\times fr\times RC}}\right) \end{aligned}\tag{2} ΔP=V× R2+(2π×fr×RC1)2 ×sin(2π×fr×t)×sin(2π×fr×t+θ) θ=tan1(2π×fr×RC1)(2)

氧气摄入过程

肺部从空气中分离出的氧气带入血液中,血液质量Mi等同于问题空间中的个体移动。血液通过施加在其上的压力来移动,因此氧气从施加更多压力的一侧移动到施加较少力的一侧,即从较好的适应度值移向较弱的适应度值:
M i n e w , 2 = M i n e w , 1 + K i 1 × α i × ( M i n e w , 1 − M 1 ) + K 23 × α i × ( M 3 − M 2 ) (3) M_i^{new,2}=M_i^{new,1}+K_{i1}\times\alpha_i\times\left(M_i^{new,1}-M_1\right)+K_{23}\times\alpha_i\times\left(M_3-M_2\right)\tag{3} Minew,2=Minew,1+Ki1×αi×(Minew,1M1)+K23×αi×(M3M2)(3)
Kij 控制着第 i 个血液质量Mi,在动脉中的移动方向:
K i j = s i g n ( f ( M j ) − f ( M i ) ) = { 1 i f f ( M i ) < f ( M j ) − 1 i f f ( M i ) > f ( M j ) 0 i f f ( M i ) = f ( M j ) (4) \left.K_{ij}=sign\big(f\big(M_j\big)-f(M_i)\big)=\left\{\begin{array}{c}1 if f(M_i)<f\big(M_j\big)\\-1 if f(M_i)>f\big(M_j\big)\\0 if f(M_i)=f\big(M_j\big)\end{array}\right.\right.\tag{4} Kij=sign(f(Mj)f(Mi))= 1iff(Mi)<f(Mj)1iff(Mi)>f(Mj)0iff(Mi)=f(Mj)(4)

排出二氧化碳过程

论文将此动作建模为群体组成和交叉:

在这里插入图片描述
其中,si为似然值,由于肺对血液的净化作用,该似然值随着每次呼气而减小,与吸气呼气次数N呈反比关系:
s i = r a n d N e (5) s_i=\frac{rand}{N_e}\tag{5} si=Nerand(5)

在每次迭代中,吸气和呼气执行 Ne 次。如果在每个节点期望的质量有所提高,它将取代当前位置:
M i n e w , 1 = M i + M i j n e w , 3 × ( R i 2 + ( 1 2 π × f r × R i C i ) 2 × sin ⁡ ( 2 π × f r × t ) × sin ⁡ ( 2 π × f r × t + θ i ) ) (6) M_i^{new,1}=M_i+M_{ij}^{new,3}\times\left(\sqrt{R_i^2+\left(\frac{1}{2\pi\times fr\times R_iC_i}\right)^2}\times\sin(2\pi\times fr\times t)\times\sin(2\pi\times fr\times t+\theta_i)\right)\tag{6} Minew,1=Mi+Mijnew,3× Ri2+(2π×fr×RiCi1)2 ×sin(2π×fr×t)×sin(2π×fr×t+θi) (6)

伪代码

在这里插入图片描述

3.结果展示

迭代次数20w次仍未收敛🤣
在这里插入图片描述

4.参考文献

[1] Ghasemi M, Zare M, Zahedi A, et al. Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO)[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116582.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值