加权平均优化算法(WAA)-2024年12月SCI一区新算法-公式原理详解与性能测评 Matlab代码免费获取

        声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

原理简介

一、初始化

二、加权平均位置

三、定义搜索阶段:勘探和开发

四、开发阶段

五、勘探阶段

算法流程图和伪代码

性能测评

参考文献

完整代码


​加权平均优化算法(Weighted average algorithm, WAA)是一种新型的元启发式算法(智能优化算法),灵感来源于加权平均位置概念。不同于以往的动物园算法,该算法每次迭代首先建立整个种群的加权平均位置,性能也不错,值得一试!该成果由Jun Cheng于2024年12月发表在SCI一区顶刊《Knowledge-Based Systems上!

由于发表时间较短,谷歌学术上还没人引用!你先用,你就是创新!

原理简介

灵感:提出的WAA的主要思想是应用加权平均位置来求解优化问题。这种加权平均位置是指在计算总体平均位置时考虑数据集中各个元素的权重(或重要性)的统计度量。换句话说,在加权平均位置的计算中,每个元素对平均值的贡献被一个特定的因子加权。权重越大的元素对最终平均位置的影响越显著。

一、初始化

与其他算法一样,采用随机初始化:

其中rand为0 ~ 1之间的随机数,LBj为给定问题的第j个下界值,UBj为给定问题的第j个上界值。

二、加权平均位置

加权平均位置计算的第一步是计算每个参与者的适应度,并根据两个质量特征中的一个即越大越好(LTB)或越小越好(STB)对总体进行重新排列。然后,从总体中选择第一个NCandidate候选对象,计算加权平均位置,公式如下:

其中nP为总体个数,Xi为第i个候选解,Fitness为计算适应度值的函数,SumFitness为所选候选的所有适应度值的总和,XMiu为加权平均位置。另外,it是当前迭代次数,MaxIt是最大迭代次数。NCandidate是选择的候选解的个数。

三、定义搜索阶段:勘探和开发

在迭代过程中,应用下式确定候选解的搜索阶段,即勘探或开发阶段:

其中,MaxIt是当前迭代次数,MaxIt是最大迭代次数,α是一个常数,用于控制探索和开发阶段的平衡。在这项工作中,我们提出了一个等于0.5的阈值,以达到开采和勘探之间的平衡。更具体地说,f(it)≥0.5的候选解将根据开发能力移动。而在低于阈值f(it) < 0.5的条件下,候选解会根据探索能力而移动。据设想,勘探和开发之间的相互合作将产生更好的搜索空间。

、开发阶段

第一种策略侧重于利用搜索空间,该搜索空间由整个当前人口的加权平均位置以及个人最佳位置和全局最佳位置确定,如下所示:

其中w11、w12、w13是0到1的随机值,即用于调整围绕个人最佳位置XPersonalBest和全局最佳位置XGlobalBest的搜索空间扩展。

第二种策略侧重于利用整个群体的加权平均位置和个人最佳位置之间建立的搜索空间。在该策略中,全局最佳位置的位置被忽略,与第一种策略相比,缩小了该策略的搜索空间。新的搜索空间由下式(9)建立:

其中w21、w22为0 ~ 1之间的随机值。与第一种策略相比,这种移动策略更倾向于提高收敛速度和准确性。

第三种策略侧重于利用在整个人口的加权平均位置和全局最佳位置之间建立的搜索空间。为此,每个候选人的职位更新计算如下:

其中w31、w32为标量数,取值范围为0 ~ 1。此策略的搜索空间将比第一种和第二种策略的搜索空间窄。从全局最佳位置到加权平均位置的移动将提高收敛速度和精度。

五、勘探阶段

第一个勘探策略如下式所示:

式中S为莱维飞行的步长,XGlobalBest,j(it)为迭代第1次时全局最优解的第j个位置。Xi,j (it +1)表示迭代it +1时第i个解的第j个位置。

在某些情况下,算法确定的全局最优值可能在全局最优位置周围的区域,与全局最优位置的理想值相差太远。在这种情况下,WAA在遵循第一种策略时面临收敛到局部最优的风险。为了克服这个限制,我们采用第二种移动策略来调整搜索空间:

其中LBmin和UBmin定义为各维下界和上界的最小值。通过这种移动策略,搜索代理将移动到新的位置,寻找其他更好的区域

算法流程图和伪代码

为了使大家更好地理解,这边给出作者算法的流程图伪代码,非常清晰!

如果实在看不懂,不用担心,可以看下源代码,再结合上文公式理解就一目了然了!

性能测评

原文作者在无约束基准函数和约束工程挑战验证其性能优势,并将WAA应用于电弧增材制造(WAAM)零件表面波纹度的预测和优化,表现出良好的性能。

这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,设置种群数量为30,迭代次数为1000,和经典的鲸鱼优化算法WOA进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!

可以看到,这个算法在大部分函数上均优于经典的WOA算法,性能非常不错!大家应用到各类预测、优化问题中也是一个不错的选择~

参考文献

[1]Cheng J, De Waele W. Weighted average algorithm: a novel meta-heuristic optimization algorithm based on the weighted average position concept[J]. Knowledge-Based Systems, 2024: 112564.

完整代码

如果需要免费获得图中的完整测试代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:

WAA

也可点击下方小卡片,再后台回复个人需求(比如WAA-LSTM)定制以下WAA算法优化模型(看到秒回):

1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、SAE、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、TCN、BiTCN、ESN、Transformer等等均可~

2.组合预测类:CNN/TCN/BiTCN/DBN/Transformer/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~

3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~

4.路径规划类:机器人路径规划、无人机三维路径规划、冷链物流路径优化、VRPTW路径优化等等~

5.优化类:光伏电池参数辨识优化、光伏MPPT控制、储能容量配置优化、微电网优化、PID参数整定优化、无线传感器覆盖优化、故障诊断等等均可~~

6.原创改进优化算法(适合需要创新的同学):原创改进2024年的加权平均优化算法WAA以及班翠鸟PKO、蜣螂DBO等任意优化算法均可,保证测试函数效果!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值