2024年中科院一区顶刊算法—加权平均优化算法(WAA)-性能测评及Matlab代码免费获取

        本期带来加权平均优化算法(Weighted average algorithm, WAA)。该算法于2024年12月最新发表在中科院1区顶刊《Knowledge-Based Systems》上。其核心思想是通过对种群的加权平均位置进行优化,平衡全局搜索(Exploration)与局部开发(Exploitation),相较与广大动物园算法更有看点!!!

255deff9e6a34c7fa9b1c2a84ee52b4b.png

6653557a6c1b4bdda430dea56efd2adc.png

刚发表,目前没人引用!

1、建模原理(详细见原文)


2、WAA算法伪代码和流程图

6f36d296fb4d404d94c6f3597ef7bdd2.png2998ebc2ea4d4d6282ac331cb5636ac2.png

3、测试函数结果对比

        原文作者为了验证WAA的有效性和可靠性,将其应用于各种优化挑战,其中包括无约束基准函数和约束工程挑战。基于Friedman和Wilcoxon分析,可以得出结论,该算法在考虑基准函数和工程问题时获得了最佳性能。

        为了方便各位使用和理解,采用CEC2005中的23种测试函数与INFO(向量加权平均算法)PSO进行对比测试!(仅展示4组(为了查看WAA算法的稳定性和鲁棒性,单峰、多峰、固定多峰函数均包含在内),其余函数可自行切换测试)

1b9268e211ea4182c822af34a52bac97.png

79dc18d18ca5c944c645031787d1752d.png

b939f9dc5feb689f6853fab6a4e4f8af.png

203b1cafd44d146c210d2d24fc25cd33.png

可以看出在三类测试函数中WAA算法均表现优异

[1]Cheng J, De Waele W. Weighted average algorithm: a novel meta-heuristic optimization algorithm based on the weighted average position concept[J]. Knowledge-Based Systems, 2024: 112564.

### 加权平均算法的实现 加权平均种常见的统计方法,在编程中可以通过简单的数学运算来实现。以下是关于如何在编程环境中实现加权平均的具体说明。 #### 数学定义 加权平均的核心思想是对组数值赋予不同的权重,从而得到个综合的结果。假设有组数据 \( x_1, x_2, \ldots, x_n \) 和对应的权重 \( w_1, w_2, \ldots, w_n \),则加权平均可以表示为: \[ WA = \frac{\sum_{i=1}^{n}(w_i \cdot x_i)}{\sum_{i=1}^{n}w_i} \] 其中: - \( WA \) 表示加权平均值, - \( x_i \) 是第 \( i \) 个数据点, - \( w_i \) 是对应的数据点的权重。 #### 编程实现 以下是个 Python 实现的例子,用于计算给定数据和权重的加权平均值。 ```python def weighted_average(data_points, weights): """ 计算加权平均值 参数: data_points (list): 数据列表 weights (list): 权重列表 返回: float: 加权平均值 """ if len(data_points) != len(weights): raise ValueError("数据点数量必须等于权重数量") numerator = sum(x * w for x, w in zip(data_points, weights)) # 分子部分 denominator = sum(weights) # 分母部分 if denominator == 0: raise ZeroDivisionError("总权重不能为零") return numerator / denominator # 测试例子 data = [10, 20, 30, 40] weights = [1, 2, 3, 4] result = weighted_average(data, weights) print(f"加权平均值: {result}") ``` 上述代码实现了基本的加权平均逻辑,并通过异常处理确保输入的有效性[^1]。 #### 使用 MATLAB 的实现 对于 MATLAB 用户,也可以轻松实现类似的加权平均功能。下面提供了个简单示例: ```matlab function wa = weightedAverage(dataPoints, weights) % 检查输入长度致性 if length(dataPoints) ~= length(weights) error('数据点数量必须等于权重数量'); end % 计算分子和分母 numerator = sum(dataPoints .* weights); denominator = sum(weights); % 防止除以零的情况 if denominator == 0 error('总权重不能为零'); end % 输出加权平均值 wa = numerator / denominator; end % 测试函数 data = [10, 20, 30, 40]; weights = [1, 2, 3, 4]; wa_result = weightedAverage(data, weights); disp(['加权平均值: ', num2str(wa_result)]); ``` 此 MATLAB 函数同样遵循了严格的输入验证流程并提供了清晰的功能描述[^4]。 #### 结合优化场景的应用 如果希望进步扩展到更复杂的优化场景,比如使用加权平均优化算法WAA),可以根据 Jun Cheng 提出的研究成果构建相应的模型。具体来说,WAA 算法利用种群中的个体位置信息以及它们的适应度值作为权重因子,动态调整搜索方向,达到全局最优的目的[^2]。 例如,在支持向量机(SVM)参数调优过程中,可以采用 WAA 对核函数参数进行寻优操作。这通常涉及多次迭代过程,每次都会重新评估当前解的质量并通过更新后的加权平均位置指导下步探索动作[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值