本期带来加权平均优化算法(Weighted average algorithm, WAA)。该算法于2024年12月最新发表在中科院1区顶刊《Knowledge-Based Systems》上。其核心思想是通过对种群的加权平均位置进行优化,平衡全局搜索(Exploration)与局部开发(Exploitation),相较与广大动物园算法更有看点!!!
刚发表,目前没人引用!
1、建模原理(详细见原文)
2、WAA算法伪代码和流程图
3、测试函数结果对比
原文作者为了验证WAA的有效性和可靠性,将其应用于各种优化挑战,其中包括无约束基准函数和约束工程挑战。基于Friedman和Wilcoxon分析,可以得出结论,该算法在考虑基准函数和工程问题时获得了最佳性能。
为了方便各位使用和理解,采用CEC2005中的23种测试函数与INFO(向量加权平均算法)和PSO进行对比测试!(仅展示4组(为了查看WAA算法的稳定性和鲁棒性,单峰、多峰、固定多峰函数均包含在内),其余函数可自行切换测试)
可以看出在三类测试函数中WAA算法均表现优异!
[1]Cheng J, De Waele W. Weighted average algorithm: a novel meta-heuristic optimization algorithm based on the weighted average position concept[J]. Knowledge-Based Systems, 2024: 112564.