GNSS坐标系概述

目录

1、天球坐标系

1.1、天球的基本概念:

1.2、岁差与章动改正

1.3、天球坐标系的定义

1.4、天球坐标系的意义

2、地球坐标系

2.1、基本概念

2.2、坐标系分类

2.3、极移

3、坐标系之间的转化

4、投影

4.1、概念介绍

4.2、常见投影方式

4.2.1、高斯投影

4.2.2、墨卡托投影

4.2.3、UTM投影

5、坐标校正

5.1、基准转换

5.2、点校正

5.3、基准转换和点校正的区别

6、小结


1、天球坐标系

1.1、天球的基本概念:

暂时不考虑其它天体,仅考虑地心天球坐标系,重点了解一下黄道面、赤道面、春分点即可:

天球:以地球质心为球心,以无穷远为半径形成的球体

天轴:地球自转轴的延伸

天极:天轴与天球表面的交点

赤道面:过地球质心与天轴垂直的平面

黄道面:地球公转平面

春分点:太阳在天球上从南向北移动,运行到天球赤道和黄道的交点

1.2、岁差与章动改正

前面说了,天球天轴是地球自转轴的延伸,但地球自转过程中,自转轴的方向其实也在变化,这种改变通常包括岁差(也叫进动)和章动

岁差:由于日月行星引力的共同作用,地球自转轴在空间的方向发生周期性变化

章动:在行星或陀螺仪的自转运动中,轴在进动中的一种轻微不规则运动,使自转轴在方向的改变中出现如“点头”般的摇晃现象。行星的章动来自于力,并使得岁差的速度不是常数,而会随着时间改变

如下图所示,绿色为地球自转轴,蓝色表示岁差影响,红色表示岁差与章动影响

由于岁差和章动的存在,天球坐标系也会根据是否考虑岁差与章动改正分成以下三种:

不考虑岁差和章动影响:协议天球坐标系

仅考虑岁差影响:瞬时平天球坐标系

考虑岁差和章动影响:瞬时真天球坐标系

实际运用中,只要有岁差和章动改正数,就能实现上述三种坐标系统的相互转换

1.3、天球坐标系的定义

GNSS测量过程中常用的是地心天球赤道坐标系,该坐标系的组成如下:

原点:地球质心

坐标轴: X轴指向 J2000.0 历元平春分点,Z 轴为 J2000.0 历元平天极,Y轴完成右手系

1.4、天球坐标系的意义

前面讲了这么多,但我相信很多初学者和我一样,对天球坐标系还是没什么概念,也不清楚它到底有什么用。

众所周知,在地球上想表示我们所处的位置,可以使用一组经纬度轻松完成,那么在地球以外的天体和卫星也可以用经纬度加上高度表示吗?

首先想象一下,卫星绕着其轨道旋转一周回到原来的位置后,它在地球上的投影(星下点)所在的经纬度还是原来的经纬度吗?当然不会,因为在这期间地球也在不断的自转,导致相同位置上的卫星不同时间内其星下点经纬度也不同。因此想要用经纬度表示卫星位置,就不得不考虑地球自转角度的影响,这会给我们描述卫星位置带来极大不便。

为了解决上述问题,GNSS中常用天球坐标系来描述卫星轨道和GPS接收机所处的空间位置,这样就不用考虑地球自转的影响了。

简单来说,GNSS中天球坐标系最主要的作用之一就是提供了一个稳定的(即原点和坐标轴指向都不会随时间发生改变)的坐标系统,为卫星空间位置的表达和计算提供了基础。

2、地球坐标系

2.1、基本概念

地球坐标系的主要任务是描述地面点在地球上的坐标,为了保证地面点坐标不会随着地球自转而改变,该坐标系会随着地球自转一同改变,因此也被称为地固坐标系。

2.2、坐标系分类

根据坐标原点的不同,地球坐标系可分为地心坐标系和参心坐标系:

地心坐标系:

原点位于地球质心,z轴和地球自转轴平行,x轴位于地球赤道面指向经度零点,y轴构成右手系。WGS84、CGCS2000等坐标系都是地心坐标系。

参心坐标系:

原点位于参考椭球中心,z轴和地球自转轴平行,x轴位于参考椭球赤道面,平行于本初子午面。北京54、西安80等坐标系都是参心坐标系。

根据坐标表现形式的不同,地球坐标系可分为空间直角坐标系和空间大地坐标系:

空间直角坐标系,坐标格式为XYZ

空间大地坐标系,坐标格式为BLH

二者相互转换的公式如下:

其中N为椭球卯酉圈半径,e是椭球第一偏心率,a为椭球长半轴,b为椭球短半轴

2.3、极移

极移:因地球自转轴在地球体内位置的变化而形成的极点在地球表面上的位置发生变化的现象。极移会对以地球北极为基点的地心地固坐标系(ECEF)造成影响,使其坐标轴指向发生变化

和天球坐标系的分类相似,不考虑极移影响的坐标系称为协议地球坐标系,考虑极移影响的坐标系称为瞬时真地球坐标系,只要有极移参数,实际应用过程中二者 也可以相互转换

3、坐标系之间的转化

天球坐标系转为地球坐标系:

4、投影

前面介绍的各种坐标系统其实都是在三维空间上的,而在日常的GNSS使用场景中,例如地图导航、土地测绘、GIS专题图等,往往都需要处理测量点在地图上的二维坐标。按照一定的数学法则,将物体在三维空间中的坐标转换到平面上的过程就叫投影。

4.1、概念介绍

投影坐标系是相对于地理坐标系而言的,投影坐标系是由地理坐标系通过投影方式计算得到的

地理坐标系是以椭球体面为参考面,以法线为依据,用经纬度表示地面点在椭球表面的位置的坐标系统,我们上面说到的WGS84等地球坐标系广义上也是一种地理坐标系。

投影方式可以分为以下几类:

圆柱投影:将地球表面投影到一个圆柱面上,再将圆柱面展开形成平面地图。

锥形投影:将地球表面投影到一个圆锥面上,再将圆锥面展开为平面地图。

方位投影:将地球表面沿着某个方向进行投影。

除了上述分类,还可以按照投影轴方向分成正轴、横轴、斜轴投影等,以上方式可以组合出来下述投影种类(其实还有切投影、割投影、等角投影、等积投影等分类,此处笔者不一一概述了)

4.2、常见投影方式

4.2.1、高斯投影

高斯投影为等角横切椭圆柱投影。假想用一个椭圆柱横切于地球椭球体的某一经线上,这条与圆柱面相切的经线,称中央经线。以中央经线为投影的对称轴,将东西各3°或1°30′的两条子午线所夹经差6°或3°的带状地区按数学法则、投影法则投影到圆柱面上,再展开成平面,即高斯-克吕格投影,简称高斯投影。这个狭长的带状的经纬线网叫做高斯-克吕格投影带。

高斯-克吕格投影特点:

1、中央子午线是直线,其长度不变形;其他子午线是凹向中央子午线的弧线,并以中央子午线为对称轴;

2、赤道线是直线,但有长度变形;其他纬线为凸向赤道的弧线,并以赤道为对称轴;

3、经线和纬线投影后仍然保持正交;

4、离开中央子午线越远,变形越大。

由于上述第4条特点,仅以某条线作为投影轴时,地图边缘的的变形会过大,无法满足实际应用需求;因此高斯投影一般采用分带投影的方法,即将地球上不同区域分成可使投影边缘的变形不致过大。我国各种大、中比例尺地形图采用了不同的高斯-克吕格投影带。其中大于1:1万的地形图采用3°带;1:2.5万至1:50万的地形图采用6°带。

要注意的是,实际应用过程中,为了保证每个分带上投影后坐标是正数,一般会在投影后的y坐标基础上加500000m

4.2.2、墨卡托投影

由荷兰地图学家墨卡托(G. Mercator)于1569年创拟,为地图投影方法中影响最大的,又称正轴等角圆柱投影。

假设地球被围在一中空的圆柱里,其基准纬线与圆柱相切(赤道)接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定基准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影特点:

1、没有角度变形,由每一点向各方向的长度比相等;

2、经纬线都是平行直线,且相交成直角;经线间隔相等,纬线间隔从基准纬线处向两极逐渐增大。

3、长度和面积变形明显,但基准纬线处无变形,变形从基准纬线处向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

实际应用时,横轴墨卡托投影(TM)的应用也非常广发,顾名思义,该投影就是将墨卡托投影中的圆柱体修改为横轴,这与高斯投影的投影方式非常类似。

4.2.3、UTM投影

UTM投影全称为“通用横轴墨卡托投影”(Universal Transverse Mercator),是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996。美国于1948年完成这种通用投影系统的计算。与高斯-克吕格投影相似,该投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是为了保证离中央经线左右约330km处有两条不失真的标准经线。

UTM投影分带方法与高斯-克吕格投影相似,在东西方向上自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。此外,在南北方向上UTM采用8度分带,从80S到84N共20个纬度带(X带多4度),分别用C到X的字母来表示。为了避免和数字混淆,I和O没有采用。

特别说明,高斯投影和UTM:

高斯-克吕格投影与UTM投影都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。

从投影几何方式看,高斯-克吕格投影是“等角横切椭圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。

从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996。因此,高斯投影和UTM投影坐标之间可以采取以下公式近似转换:

Xutm=0.9996*Xgauss

Yutm=0.9996*Ygauss​​​​​​​

5、坐标校正

由于RTK测量采用的坐标系多为WGS84坐标系,而我国内业处理数据多采用北京54、西安80,CGCS2000等坐标系,因此需要将WGS84坐标转为本地坐标。此外还有一些工程作业时采用的当地坐标系和主流坐标系也不相同,一样需要进行坐标转换。

一般来说,在不同坐标系之间转换点坐标,可以通过基准转换或者点校正来完成,其实二者的原理是类似的,都是利用平移、旋转、缩放参数来实现三维坐标的转换,只是二者具体的实现方法有所区别,因此很多软件里会把基准转换和点校正功能区分开。

5.1、基准转换

基准转换大多采用布尔莎七参数模型或者莫洛登斯基三参数模型,基准转换模型会统一控制平面坐标和高程坐标的转换,更加适用于大范围的不同基准下的坐标转换,对控制点的精度要求也会更高。

基准转换采用七参数模型时,需要至少3个控制点,根据以下转换公式,求解其中3个平移参数、3个旋转参数和1个比例参数(如果只有1个控制点,只会利用三参数模型求解平移参数)。

5.2、点校正

而点校正则是分开计算平面坐标转换参数和高程坐标转换参数。平面上大多采用二维四参数模型,通过x、y平移量、旋转角和缩放因子四个参数控制平面坐标转换;高程上则有多种高程拟合模型可供选择,包括固定差、平面拟合、曲面拟合、TGO等。点校正更适合于小范围内的坐标转换。

平面上的转换模型大多如下所示,在单点校正时,由于只有1个控制点,仅会求解2个平移参数;两点校正时,可以求出所有待求参数,更多的控制点用于点校正时,则可以计算出水平残差,供用户判断精度是否满足要求

高程上的高程拟合模型有许多种,实际应用中需要根据使用场景和控制点数量进行选择。

固定差:需要至少1个控制点

平面拟合:至少3个控制点

曲面拟合:至少6个控制点

TGO模型:至少5个控制点

5.3、基准转换和点校正的区别

那么到底什么时候采用基准转换,什么时候采用点校正呢?二者之间的区别到底是什么?

七参数模型是一种比较严密的坐标转换模型。七参数模型需要先将平面坐标或大地坐标转换到空间直角坐标,然后在两个空间直角坐标系之间建立转换模型。空间直角坐标系是三维的,因此一共需要三个平移参数、三个旋转参数和一个尺度因子。空间直角坐标到大地坐标或高斯投影坐标之间的转换不存在精度损失,因此七参数转换精度不会受到投影变形的影响,适用于较大范围的转换且具有较高的转换精度,但是七参数转换计算比较复杂。

四参数模型假定两个平面坐标系之间的变化为线性的,通过两个平移参数、一个旋转参数,一个缩放参数直接建立两个平面坐标系之间的转换关系;四参数模型不考虑椭球和投影带来的变形不一致问题,只适用于小范围的坐标转换。优点是模型简单,容易计算,不需要知道投影参数,椭球参数等。无论是工程坐标系,还是不同椭球、不同投影的平面坐标系,只要是两个平面直角坐标系之间的转换,都可以使用四参数模型,通过两个以上的公共点求解转换参数。但是四参数转换模型假设两个平面坐标系之间的关系是线性变化,而对于不同椭球之间的两个投影坐标系,并不符合该假设,离中央子午线越远的地方,变形越大,而离中央子午线近的地方变形更小,因此,对于较大范围的坐标转换,使用四参数计算误差就会较大。

综上所述,待转换的点的范围过大时,就需要考虑不同椭球参数带来的影响,此时更适合采取基准转换,而在小范围内则几乎可以忽略椭球参数带来的影响,就可以考虑采用更加简单的点校正了。当然,实际应用时,二者一起使用的场景也很常见。

6、小结

本文为笔者梳理所学而著,有遗漏与错误之处还望指正。

该博客主要梳理GNSS坐标系相关基础概念,过于细致的内容没有做详细介绍,只关注把握主体脉络。对某个模块感兴趣的读者可以自行查阅相关资料。

除了上述坐标系统、投影、坐标校正之外,坐标系还有一个重要组成部分就是高程系统,但高程系统也比较复杂,内容也不少,因此未在此篇介绍,之后再另起一篇博客单独梳理。

文章图片大多来源于网络,侵删。

文章部分内容参考了以下文献(有重复内容的没有一一列出)

【精选】GNSS原理与应用(三)——坐标系统与时间系统_gnss坐标_unbiliverbal的博客-CSDN博客

地图投影——高斯-克吕格投影、墨卡托投影和UTM投影_墨卡托投影和高斯投影区别-CSDN博客

坐标系统,参数计算和点校正

### GNSS室内外定位服务中的时间同步问题及其解决方案 #### 时间不一致引发的问题 在GNSS室内外定位服务中,当人流量数据的时间戳与GNSS设备记录的时间存在偏差时,可能会导致一系列问题。例如,在数据分析过程中,如果两组数据无法精确匹配,则会影响轨迹重建、行为模式分析以及预测模型的准确性[^1]。此外,这种时间差异还可能导致位置更新延迟或错误的位置关联,尤其是在动态环境中(如交通枢纽),这会显著降低系统的可靠性和用户体验。 对于融合了其他传感器(如蓝牙、声学信号等)或多源定位技术的情况,时间不同步也会放大误差范围。比如,蓝牙信标的RSSI值变化需要结合具体时刻来校正路径推算(PDR),而任何微小的时间偏移都可能引入额外不确定性[^2]。 #### 解决方案概述 针对上述由时间不同步引起的各种挑战,以下是几种常见的应对策略: 1. **硬件级时间同步机制** 使用支持精准授时功能的硬件组件能够有效缓解这一矛盾点。例如GPS接收器本身就可以作为UTC标准时间源用于整个系统内各部分之间的协调工作。另外还可以考虑采用IEEE 1588 Precision Time Protocol (PTP), 这种协议允许分布式网络节点之间达到亚微秒级别的时间一致性水平[^3]。 2. **软件补偿算法** 当完全依赖于物理层面上实现绝对同步较为困难或者成本过高时, 可以借助数学建模方式来进行事后调整。一种典型做法就是建立一个映射关系表,它描述了实际采集到的数据序列与其理想状态下的对应关系。之后再利用插值法或者其他数值逼近手段完成最终修正过程[^4]。 3. **混合架构设计思路** 结合边缘计算理念构建新型服务体系结构也是一种可行途径。在这种框架下,靠近用户的MEC服务器承担起本地化处理任务的同时也负责维护全局视角下的时空参照系管理职责。如此一来既减少了远端数据中心负载压力又提升了响应速度和服务质量[^5]。 ```python def time_synchronization_correction(gnss_time, human_flow_data_time): """ A function to demonstrate the concept of correcting time discrepancies between GNSS and other data sources. Args: gnss_time (float): Timestamp from GNSS device. human_flow_data_time (float): Timestamp from another source like Bluetooth or WiFi. Returns: float: Corrected timestamp after applying synchronization logic. """ delta_t = abs(gnss_time - human_flow_data_time) corrected_timestamp = min(gnss_time, human_flow_data_time) + delta_t / 2 return corrected_timestamp ``` 以上代码片段展示了一个简单的概念验证函数,用来说明如何通过平均两个异构时间戳的方式来减少它们间的差距影响。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值