Verilog 中的 ^ 的用法

本文主要总结了异或运算符^的用法,包括奇偶判断、交换两个整数的值、格雷码转换以及奇数分频。奇偶判断是将数的每一位按位异或;交换整数无需第三个参数;格雷码转换涉及自然二进制码与二进制格雷码的相互转换;奇数分频常用错位“异或”法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

复习函数和任务中总遇到^,让我疑惑,

cal_parity = ^address;

这个不是异或吗?怎么可以这么用呢?

难道意思是:cal_parity = cal_parity ^ address(类似于C语言),事实还真不是!


这里就来总结下^的用法:

(1)奇偶判断

^a操作就是将a中的每一位按位逐一进行异或,例如a=4'b1010,则b=1^0^1^0=0,由此可以判断a中为1的位数是奇数还是偶数,是一个便捷的操作。

开头遇到的问题就是这个问题,是按位异或。

(2)交换两个整数的值而不必用第三个参数
a = 9;
b = 11;

a=a^b; 1001^1011=0010
b=b^a; 1011^0010=1001
a=a^b;  0010^1001=1011

a = 11;
b = 9;

这种用法就是两个数的异或。

(3)格雷码(Gray code)

格雷码(Gray code)是由贝尔实验室的Frank Gray在1940年提出,用于在PCM(Pusle Code Modulation)方法传送讯号时防止出错,并1953年三月十七日取得美国专利。格雷码是一个数列集合,相邻两数间只有一个位元改变,为无权数码,且格雷码的顺序不是唯一的。直接排列以二进制为0值的格雷码为第零项,第一项改变最右边的位元,第二项改变右起第一个为1的位元的左边位元,第三、四项方法同第一、二项,如此反覆,即可排列出n个位元的格雷码。

1、自然二进制码转换成二进制格雷码
自然二进制码转换成二进制格雷码,其法则是保留自然二进制码的最高位作为格雷码的最高位,而次高位格雷码为二进制码的高位与次高位相异或,而格雷码其余各位与次高位的求法相类似。



2、二进制格雷码转换成自然二进制码 
二进制格雷码转换成自然二进制码,其法则是保留格雷码的最高位作为自然二进制码的最高位,而次高位自然二进制码为高位自然二进制码与次高位格雷码相异或,而自然二进制码的其余各位与次高位自然二进制码的求法相类似。


 二进制数转格雷码
(假设以二进制为0的值做为格雷码的0)
格雷码第n位 = 二进制码第(n+1)位+二进制码第n位。不必理会进制。

Verilog 代码:gray=(binary>>1)^binary;


格雷码转二进制数
二进制码第n位 = 二进制码第(n+1)位+格雷码第n位。因为二进制码和格雷码皆有相同位数,所以二进制码可从最高位的左边位元取0,以进行计算。

      verilog 代码://------假设 reg [n-1] gray,binary;

             integer i;

             for(i=0;i<=n-1;i=i+1)

              binary[i]= ^(gray>>i) //gray移位后,自身按位异或

放一段代码这,用于参考:

/*Logic to convert binary numbers into Gray coded binary numbers is implemented in the following Verilog Code.
*/
module binary2gray();
reg clk;
reg rstn;
reg [5:0] counter_binary, counter_binary_reg, counter_gray, counter_gray_reg;
integer count, file_wr;

/* Initial block to generate clock and reset */ 
initial  begin
    clk = 0; rstn = 0;  #100 rstn = 1;
    forever begin
        #10 clk = !clk; 
 end end    

/* Synchronous Logic for registering the data and incrementing the counter for binary data */
always @ (posedge clk or negedge rstn)
begin
    if (!rstn) begin
        counter_binary_reg <= 'b0;
        counter_gray_reg <= 'b0;  end
    else begin 
        counter_binary_reg <= counter_binary + 1;
        counter_gray_reg <= counter_gray;
        $display("binary number= 6'b%b : gray en-coded binary number = 6'b%b", counter_binary_reg, counter_gray_reg);   end end

/* Logic is to get Gray code from Binary code */
function[5:0] binary2gray ;
    input[5:0] value;
    integer i;
    begin 
        binary2gray[5] = value[5];
        for (i=5; i>0; i = i - 1)
            binary2gray[i-1] = value[i] ^ value[i - 1];
    end
endfunction

/* Get gray encoded output */
always @(*)
begin 
  counter_gray = counter_gray_reg;
  counter_binary = counter_binary_reg;
  counter_gray = binary2gray(counter_binary_reg); end
endmodule

 

 

四、奇数分频

奇数分频电路:

  奇数分频电路常用的是错位“异或”法的原理。如进行三分频,通过待分频时钟的上升沿触发计数器进行模三技术,当计数器计数到邻近值进行两次翻转。比如计数器在计数到1时,输出时钟进行翻转,计数到2时再进行翻转,即在邻近的1和2时刻进行两次翻转。这样实现的三分频占空比为1/3或2/3.如果要实现占空比为50%的三分频时钟,可通过待分频的时钟上升沿触发计数器和下降沿触发计数器进行三分频,然后将上升沿和下降沿产生的三分频时钟进行相或预算,即可得到占空比为50%的三分频时钟。

      错位“异或”法推广:

  对于实现占空比为50%的N倍奇数分频,首先进行上升沿触发的模N计数,计数到某一选定值时,进行输出时钟翻转,然后进过(N-1)/2再次进行翻转得到一个占空比非50%的技术分频时钟。再者同时进行下降沿触发的模N计数,到和上升沿触发输出时钟翻转选定值相同时,进行输出时钟翻转,同样经过(n-1)/2时,输出时钟再次翻转生成占空比非50%的奇数N分频时钟。两个占空比非50%的时钟相或运算,得到占空比为50%的奇数N分频时钟。

参考:异或 ^ 的几个作用

 

 

<think>好的,我现在需要回答用户关于Verilog中按位异或运算符(^)的用法和含义的问题。首先,我得回忆一下Verilog的运算符知识,尤其是按位异或的部分。 用户提到了按位异或运算符^,我需要明确它的基本功能。按位异或通常用于两个操作数的每一位进行异或运算,相同为0,不同为1。例如,如果两位都是0或都是1,结果为0;如果一个是0,一个是1,结果就是1。这点和C语言中的异或运算符类似,不过Verilog是按位操作,所以如果操作数的位宽不同,可能需要处理位数扩展的问题。 接下来,我需要考虑如何解释这个运算符的具体用法,包括单目和双目情况。单目情况下,^可能作为归约异或使用,即对一个向量的所有位进行异或,返回一位的结果。比如,^4'b1010的结果是1^0^1^0=0。而双目情况下,比如a ^ b,会对a和b的每一位进行异或,生成新的向量。这部分需要举例说明,让用户更清楚。 然后,我需要举几个实际的代码例子。例如,简单的按位异或操作,不同位宽时的处理,以及归约异或的应用。这些例子能帮助用户理解不同情况下的行为。例如,当两个操作数位数不同时,Verilog通常会将较短的数用零扩展,然后再逐位异或。例如,4'b1010 ^ 3'b111会被扩展为4'b1010 ^ 4'b0111,结果4'b1101。 另外,需要注意应用场景,比如奇偶校验生成,这是归约异或的典型应用。还有数据加密中的位操作,或者状态切换时的位翻转。这些实际例子能帮助用户理解运算符的实际用途。 同时,我需要确保回答结构清晰,分点说明,符合用户要求的格式。可能需要分为运算符功能、单目与双目的区别、代码示例、注意事项、应用场景等部分。每个部分用简洁的语言解释,并附上代码示例。 还要检查是否有需要引用的地方。用户提供的引用[1]和[2]提到逻辑运算符和位运算符的区别,但用户的问题主要集中在按位异或,所以可能需要提到逻辑运算符如&&和||与位运算符的不同,但重点放在^的按位操作上。不过根据引用中的说明,逻辑运算符在Verilog中的用法与其他语言类似,因此可能不需要深入讨论,除非涉及对比。 最后,生成相关问题,确保问题与主题相关,能够引导用户进一步学习。例如,归约异或和按位异或的区别,不同位宽处理,实际应用案例,以及组合其他运算符的使用。 现在需要组织这些思路,确保符合用户的要求:使用中文,行内公式用$...$,独立公式用$$...$$,但在这个问题中可能数学公式不多,但如果有涉及的话需要注意。例如,归约异或的结果可以表示为$a_0 \oplus a_1 \oplus \dots \oplus a_n$,用行内公式格式。 还要注意代码块的正确格式,使用三个反引号包裹,并标明语言为verilog。例如: ```verilog assign result = a ^ b; ``` 在注意事项中,需要提到位宽匹配的问题,以及归约异或和逻辑异或的区别。例如,逻辑运算符如!、&&、||会将操作数视为布尔值,而位运算符处理每一位。 总结,回答的结构大致如下: 1. 按位异或运算符的功能定义 2. 单目(归约)与双目用法的区别 3. 代码示例 4. 注意事项 5. 应用场景 6. 相关问题 需要确保每个部分都准确无误,并且语言简洁明了,符合用户的需求。</think>### Verilog中按位异或运算符(^)详解 #### 一、运算符功能 Verilog的按位异或运算符`^`作用于两个操作数的**对应二进制位**,规则为: - 相同位值(0与0,或1与1)时结果为0 - 不同位值(0与1,或1与0)时结果为1 数学表达式为: $$ a \oplus b = (\neg a \cdot b) + (a \cdot \neg b) $$ #### 二、单目与双目用法区别 1. **双目运算**:`a ^ b` - 对两个操作数的每一位进行异或 - 若位宽不同,自动补零对齐 ```verilog wire [3:0] result = 4'b1010 ^ 4'b1100; // 结果为4'b0110 ``` 2. **单目运算**:`^a` - 归约异或(Reduction XOR):逐位异或所有比特位 - 结果宽度为1位 ```verilog wire parity = ^data; // 生成奇偶校验位 ``` #### 三、代码示例 1. **基本位操作** ```verilog module xor_example; reg [3:0] a = 4'b1010; reg [3:0] b = 4'b1100; wire [3:0] c = a ^ b; // 结果4'b0110 endmodule ``` 2. **不同位宽处理** ```verilog wire [3:0] x = 4'b1010 ^ 3'b111; // 等价于4'b1010 ^ 4'b0111 → 4'b1101 ``` 3. **归约异或应用** ```verilog // 计算8位数据的奇校验位 assign odd_parity = ^byte_data; // 奇数个1时结果为1 ``` #### 四、注意事项 1. **位宽匹配**:操作数位宽不同时,短数高位补零 ```verilog wire [3:0] y = 4'b0011 ^ 2'b10; // 等价于4'b0011 ^ 4'b0010 → 4'b0001 ``` 2. **与逻辑运算符区别**: - `^`是位运算符,逐位操作 - `&&`是逻辑运算符,将整体视为布尔值 ```verilog reg [1:0] a = 2'b01; reg [1:0] b = 2'b10; wire c = (a != 0) && (b != 0); // 逻辑与 → 1 wire d = a & b; // 按位与 → 2'b00 ``` #### 五、应用场景 1. **奇偶校验生成**:归约异或直接生成校验位 2. **数据加密**:与密钥进行异或实现简单加密 3. **位翻转控制**:通过掩码翻转特定位 ```verilog // 翻转低4位 wire [7:0] flipped = data ^ 8'h0F; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值