球 坐 标 系 x = r s i n θ c o s φ y = r s i n θ s i n φ z = r c o s θ { x = r sin θ cos φ y = r sin θ sin φ z = r cos θ r ∈ [ 0 , + ∞ ) , θ ∈ [ 0 , π ] , φ ∈ [ 0 , 2 π ] 球坐标系 x=rsinθcosφ y=rsinθsinφ z=rcosθ\\ \left\{\begin{array}{l}x=r\sin\theta\cos\varphi\\y=r\sin\theta\sin\varphi\\z=r\cos\theta\end{array}\right. r∈[0,+∞),θ∈[0, π], φ∈[0,2π] 球坐标系x=rsinθcosφy=rsinθsinφz=rcosθ⎩⎨⎧x=rsinθcosφy=rsinθsinφz=rcosθr∈[0,+∞),θ∈[0,π],φ∈[0,2π]
弧长公式
L=n× π× r/180,L=α× r
弧长=弧度*半径
图片来源于网络
在
球
坐
标
系
中
,
沿
基
矢
方
向
的
三
个
线
段
元
为
:
{
d
l
r
=
d
r
d
l
φ
=
r
sin
θ
d
φ
d
l
θ
=
r
d
θ
球
坐
标
的
面
元
面
积
是
:
d
S
=
d
l
(
θ
)
∗
d
l
(
φ
)
=
r
2
s
i
n
θ
d
θ
d
φ
体
积
元
的
体
积
为
:
d
V
=
d
l
(
r
)
∗
d
l
(
θ
)
∗
d
l
(
φ
)
=
r
2
s
i
n
θ
d
r
d
θ
d
φ
在球坐标系中,沿基矢方向的三个线段元为: \\ \left\{\begin{array}{l}dl_r=dr\\dl_\varphi^{}=r\sin\theta d\varphi\\dl_\theta=rd\theta\end{array}\right.\\ 球坐标的面元面积是:\\ dS=dl(θ)* dl(φ)=r2sinθdθdφ\\ 体积元的体积为:\\ dV=dl(r)*dl(θ)*dl(φ)=r2sinθdrdθdφ
在球坐标系中,沿基矢方向的三个线段元为:⎩⎨⎧dlr=drdlφ=rsinθdφdlθ=rdθ球坐标的面元面积是:dS=dl(θ)∗dl(φ)=r2sinθdθdφ体积元的体积为:dV=dl(r)∗dl(θ)∗dl(φ)=r2sinθdrdθdφ
r=1
θ=1
φ=1
向量((0, 0, 0), ( r*sin(θ)sin(φ),0, 0))
向量((0, 0, 0), (0, r*sin(θ)sin(φ), 0))
向量((0, 0, 0), (0, 0, r*cos(θ)))
向量((0, 0, 0), ( r*sin(θ)sin(φ), r*sin(θ)sin(φ), r*cos(θ))))