关系的定义与性质

一、关系的定义

定 义 A i 是 n 个 集 合 , 集 合 A 1 × A 2 × . . A n 的 一 个 子 集 F , 称 为 A 1 , A 2 . . . A n 上 的 一 个 n 元 关 系 。 特 别 地 , 集 合 A × B 的 一 个 子 集 R , 称 为 集 合 A 与 B 上 的 一 个 元 关 系 ( b i n a r y r e l a t i o n ) , 简 称 为 关 系 。 对 于 x ∈ A , y ∈ B , R 是 A 与 B 上 的 一 个 二 元 关 系 , 著 ( x , y ) ∈ R , 则 称 x , y 有 关 系 R , 记 为 x R y ; 着 ( x , y ) ∉ R , 则 称 x , y 没 有 关 系 R 。 若 B = A , 则 R 称 为 A 上 的 二 元 关 系 定义A_i是n个集合,\\ 集合A_1×A_2×..A_n的一个子集F, 称为A_1,A_2...A_n上的一个n元关系。\\ 特别地,集合A×B的一个子集R,称为集合A与B上 的一个元关系(binary relation),简称为关系。\\ 对于x\in A, y\in B, R是A与B上的一个二元关系,\\ 著(x,y)\in R,则称x, y有关系R,记为xRy; 着(x,y)\notin R,则称x,y没有关系R。\\ 若B=A,则R称为A上的二元关系 AinA1×A2×..AnFA1,A2...AnnA×BRAB(binaryrelation),xA,yB,RAB(x,y)RxyRxRy;(x,y)/R,xyRB=ARA

二、关系的性质:

∗ A × A 的 任 一 子 集 都 是 A 上 的 一 个 关 系 , 若 ∣ A ∣ = n , 则 A 上 的 关 系 有 ( 2 n 2 ) 个 * A×A的任一子集都是A上的一个关系,若|A|=n,则A上的关系有(2^{n^2})个 A×AAA=n,A2n2
A × A 的 子 集 的 个 数 , 也 就 是 A × A 的 幂 集 中 元 素 的 个 数 : 2 n 2 A×A 的子集的个数,也就是A×A的幂集中元素的个数:2^{n^2} A×AA×A2n2
∗ A 上 的 三 个 特 殊 的 关 系 *A上的三个特殊的关系 A

  1. 空 关 系 Φ 空关系Φ Φ
  2. 全 域 关 系 E A = A × A 全域关系E_A=A×A EA=A×A
  3. 恒 等 关 系 I A = { ( x , x ) ∣ x ∈ A } 恒等关系I_A=\{(x,x)|x\in A\} IA={(x,x)xA}

∗ 集 合 A 的 元 素 个 数 为 n , R 是 A 上 的 二 元 关 系 , 则 有 R i = R j ( 0 ≤ i ≤ j ≤ 2 n 2 ) *集合A的元素个数为n,R是A上的二元关系,则有R^i=R^j(0\leq i\leq j \leq 2^{n^2}) An,RARi=Rj(0ij2n2)
鸽 巢 原 理 : m 个 鸽 子 飞 进 n 个 巢 , 至 少 有 一 个 巢 有 ⌈ m n ⌉ 个 或 以 上 个 鸽 子 n 个 数 取 n − 1 个 值 , 则 必 有 两 个 值 相 等 R i 和 R j 仍 然 是 A 上 的 二 元 关 系 , 所 以 当 R 的 次 幂 的 个 数 大 于 2 n 2 时 一 定 不 能 再 生 成 新 的 关 系 鸽巢原理:m个鸽子飞进n个巢,至少有一个巢有\lceil \frac{m}{n} \rceil 个或以上个鸽子\\ n个数取n-1个值,则必有两个值相等\\ R^i和R^j仍然是A上的二元关系,所以当R的次幂的个数大于 2^{n^2}时一定不能再生成新的关系 mnnmnn1RiRjAR2n2

三、二元关系的关系矩阵表示:

关 系 矩 阵 的 表 示 与 行 列 表 示 的 集 合 A , B 中 的 元 素 顺 序 有 关 , 在 关 系 中 如 果 有 ( A i , B j ) , 则 关 系 矩 阵 中 a i , j = 1 , 否 则 为 0 例 . A = { 1 , 2.3.4 } 上 二 元 关 系 R = < 2 , 4 > , < 3 , 3 > , < 4 , 2 > , R 的 关 系 矩 阵 M r 中 m 2 , 4 = ( 1 ) ; m 3 , 4 = ( 0 ) 关系矩阵的表示与行列表示的集合A,B中的元素顺序有关,\\ 在关系中如果有(A_i,B_j) ,则关系矩阵中a_{i,j}=1,否则为0\\例. A=\{1,2.3.4\}上二元关系R={ <2,4>,<3,3>,<4,2> },R的关系矩阵Mr中m_{2,4}=(1);m_{3,4}= (0) A,B,(Ai,Bj),ai,j=1,0.A={1,2.3.4}R=<24><33><42>RMrm2,4=(1);m3,4=(0)
M R ∗ S = M R × M S 当 计 算 加 法 时 使 用 逻 辑 加 M_{R*S}=M_{R}×M_{S}当计算加法时使用逻辑加 MRS=MR×MS使

四、二元关系的关系图表示:

试 用 有 向 图 表 示 关 系 , 如 果 R 中 有 元 素 ( a , b ) , 则 有 一 条 a 到 b 的 有 向 边 试用有向图表示关系,如果R中有元素(a,b),则有一条a到b的有向边 Rab,ab

关系的图与矩阵表示特点:

项目有向图矩阵
反自反每个节点都无环主对角线都为0
对称两个不同的节点,若有边,则要反向成对出现
反对称两个不同的节点至多只有一条单项边

注意:对称关系与反对称关系不是完全对立的,有些关系既是对称也是反对称的,例如:空关系和恒等关系
传递性:

反对称关系的定义: 集 合 A 上 的 关 系 R 是 反 对 称 的 , 如 果 x R y , y R x 则 必 有 x = y 集合A上的关系R是反对称的,如果xRy,yRx则必有x=y ARxRy,yRxx=y

空关系,恒等关系,完全关系是传递的

在这里插入图片描述

∗ 反 自 反 和 传 递 性 来 推 导 出 反 对 称 *反自反和传递性来推导出反对称
用 反 证 法 证 明 。 如 果 关 系 R 不 是 反 对 称 , 则 : x R y 且 y R x 。 又 R 是 传 递 , 所 以 x R x , 即 R 自 反 , 与 题 目 矛 盾 。 用反证法证明。\\ 如果关系R不是反对称,则:xRy且yRx。\\ 又R是传递,所以xRx,即R自反,与题目矛盾。 RxRyyRxRxRxR

二元关系的性质

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值