「 机器人学 」“A* / D*路径规划算法”浅谈

一、前言

        在路径规划的研究中,最典型的方法就是A*搜索算法,其将地图空间划分成大小相等的栅格,然后根据环境地图障碍物信息来生成每个栅格的代价值从而构成代价地图。

二、A* / D*路径规划算法

        A*算法是利用启发式函数快速地在状态空间进行搜索,找到一条连通起点栅格和目标栅格且代价值最小的路径。A*算法假设搜索过程中地图环境信息不发生任何变化,一旦在搜索过程中环境信息发生变化,则需要重新运行A*算法进行重规划。在真实环境中,环境信息一直变化,为了提高效率,Stentz等人提出了一种能够适用于动态环境下的路径规划算法——D*算法。

        D*算法能够在重规划阶段利用前一次规划过程中已展开的中间状态节点,从而提高了动态环境下的规划效率。

但他们都只适用于低维空间的状态搜索。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Robot_Starscream

祝好!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值