(一)车辆运动学建模
上一篇博文已经做了介绍,考虑到假设条件、、同时记、,则车辆的状态方程可以简化为:
不难看出,当、时,质心C移到后轮B,的方向与车身(纵轴)方向一致。
上述模型可以看作一个输入为和状态变量为的控制系统,其一般形式为:
对于给定的参考轨迹,其上的每个点也都满足上述运动学方程,用来表示参考量,有:
将式(10)在处泰勒展开并忽略高阶项,有:
记、,式(12)、(11)相减得到:
对式(13)进行离散化处理,可以得到:
所以有:
(二)MPC设计
MPC(Model Predictive Control,模型预测控制)的核心思想是在有限的时长内(预测区域)对接下来系统的控制输入进行预测,使得系统能够按照参考轨迹运行。
参考文献2给出了如下的目标函数:
式中,和为权重矩阵,为预测时域,第一项反映了系统对参考轨迹的跟随能力,第二项反映了对控制量变化的约束。
优化问题可以描述为找到,使得:
在时刻求解式(17),得到一个最优控制序列,最优控制序列的第一个控制动作会施加到系统上,下一个周期会再次重复上述过程,这就是一个滚动优化的过程。
参考文献:
1)无人驾驶车辆模型预测控制/龚建伟,姜岩,徐威著.——北京:北京理工大学出版社,2014.4
2)Kunhe F, Lages WF, et al. Model Predictive Control of a Mobile Robot Using Linearization [J]. Proceedings of Mechatronics and Robototics, 2004(4):525-530