自动驾驶之模型预测控制

(一)车辆运动学建模

上一篇博文已经做了介绍,考虑到假设条件、同时记,则车辆的状态方程可以简化为:

不难看出,当时,质心C移到后轮B,V的方向与车身(纵轴)方向一致。

上述模型可以看作一个输入为和状态变量为的控制系统,其一般形式为:

对于给定的参考轨迹,其上的每个点也都满足上述运动学方程,用来表示参考量,有:

将式(10)在处泰勒展开并忽略高阶项,有:

,式(12)、(11)相减得到:

对式(13)进行离散化处理,可以得到:

所以有:

(二)MPC设计

MPC(Model Predictive Control,模型预测控制)的核心思想是在有限的时长内(预测区域)对接下来系统的控制输入进行预测,使得系统能够按照参考轨迹运行

参考文献2给出了如下的目标函数:

式中,为权重矩阵,为预测时域,第一项反映了系统对参考轨迹的跟随能力,第二项反映了对控制量变化的约束

优化问题可以描述为找到,使得:

时刻求解式(17),得到一个最优控制序列,最优控制序列的第一个控制动作会施加到系统上,下一个周期会再次重复上述过程,这就是一个滚动优化的过程。

 

参考文献:

1)无人驾驶车辆模型预测控制/龚建伟,姜岩,徐威著.——北京:北京理工大学出版社,2014.4

2)Kunhe F, Lages WF, et al. Model Predictive Control of a Mobile Robot Using Linearization [J]. Proceedings of Mechatronics and Robototics, 2004(4):525-530

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值