Deepseek-R1揭秘

参考:

deepseek-r1为什么强:

  • 技术架构与算法创新(不恰当的比喻o1是从小接受顶级教育的世家公子,凭借大量的金钱投入成为一个多个领域的顶级学者,deepseek-r1出身寒微,但凭借他的智商和出色的学习能力媲美o1)
  • 数据处理能力

deepseek-r1强在哪:

  • 逻辑推理和复杂问题解决
  • 多领域适应性
  • 开源
1.背景

近年来,大型语言模型(LLMs)在推理能力方面取得了显著进展。然而,如何有效提升这些模型的推理能力仍然是一个开放问题。DeepSeek-R1 的研究旨在通过大规模强化学习(RL)直接应用于基础模型,而不需要监督微调(SFT),从而显著提升推理能力。

2. 主要贡献

2.1 Post-Training: 强化学习的应用
  • 直接应用 RL:通过大规模强化学习直接应用于基础模型,无需监督微调,显著提升了推理能力。
  • 自主探索思维链(CoT):允许模型自主探索解决复杂问题的思维链,开发出 DeepSeek-R1-Zero。
2.2 Pipeline for DeepSeek-R1: 复杂的训练管道
  • 两个 RL 阶段和两个 SFT 阶段:引入了一个包含两个 RL 阶段和两个 SFT 阶段的管道,旨在发现改进的推理模式并符合人类偏好。
  • 冷启动数据:通过收集少量高质量的冷启动数据来微调基础模型,以避免 RL 训练初期的不稳定阶段。
2.3 Distillation: 知识蒸馏技术
  • 知识蒸馏:展示了较大的模型可以将推理模式提炼到较小的模型中,使得这些小模型的表现优于通过 RL 在小模型上发现的推理模式。
3. 核心算法:Group Relative Policy Optimization (GRPO)

3.1 GRPO 基础
  • 相对策略优化:GRPO 是一种专门用于增强 LLMs 推理能力的强化学习算法。它通过评估一组回答之间的相对表现来优化模型,而不是依赖外部评价者(如批评者模型)。
  • 无批评者优化:消除了对批评者模型的需求,显著降低了计算开销。
3.2 GRPO 如何应对挑战
  • 相对评估:利用组内动态来评估每个回答在同一批次中的相对表现,简化了奖励估计流程。
  • 高效训练:专注于组内优势,使 GRPO 对大型模型的训练更快且更具可扩展性。
3.3 核心思想
  • 相对评估:对于每个输入查询,模型生成一组潜在回答,并根据每个回答在组中的相对表现进行评分。
  • 推动模型发展:通过在组内引入竞争,GRPO 推动模型不断提升其推理能力。
4. 实验验证
4.1 DeepSeek-R1 Evaluation
  • 推理任务:DeepSeek-R1 在多项推理任务上表现出色,如 AIME 2024、MATH-500 等,性能接近或超过 OpenAI-o1 系列模型。
  • 知识基准测试:在 MMLU、MMLU-Pro、GPQA Diamond 等知识基准测试中表现优异,明显优于 DeepSeek-V3。
4.2 Distilled Model Evaluation
  • 小型密集模型:通过对提炼出的小型密集模型进行评估,证明了它们在推理任务中的优秀表现。
5. 讨论与未来工作
5.1 Distillation v.s. Reinforcement Learning
  • 比较提炼和 RL:探讨了两种方法的效果,各自的优势和局限性。
5.2 Unsuccessful Attempts
  • 未成功的尝试:讨论了一些未成功的尝试及其原因,为未来的研究提供了参考。
5.3 结论与未来方向
  • 总结主要成果:总结了研究的主要成果,讨论了当前模型的局限性,并提出了未来可能的研究方向。

关键内容总结

  1. 核心贡献
    • 纯强化学习(RL)提升推理能力:通过纯强化学习显著提升了大型语言模型(LLMs)的推理能力,特别是在没有监督微调的情况下。
    • 自主探索思维链:允许模型自主探索解决复杂问题的思维链,开发出 DeepSeek-R1-Zero。
  2. 主要方法
    • DeepSeek-R1-Zero:直接应用 RL 于基础模型,不依赖监督微调。
    • DeepSeek-R1:引入冷启动数据后应用 RL,重点在于提升推理密集型任务的能力。
  3. 实验验证
    • 多任务表现优异:展示了在多个推理任务和基准测试中的卓越表现,特别是与 OpenAI-o1 系列模型相比。
    • 知识蒸馏技术:成功地将大模型的推理能力提炼到小型模型中,使其在推理任务中表现出色。
  4. 提炼技术
    • 知识蒸馏:通过从 DeepSeek-R1 提炼出推理能力,应用到较小的密集模型中,展示其在多个基准测试中的出色表现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值