机器学习|矩和协方差矩阵|15mins入门|概统学习笔记(十三)

矩、协方差矩阵

  • k阶原点矩 E ( X k ) E(X^k) E(Xk)

  • k阶中心距 E ( [ X − E ( X ) ] k ) E([X-E(X)]^k) E([XE(X)]k)

  • k阶绝对原点矩 E ( ∣ X ∣ k ) E(|X|^k) E(Xk)

  • k阶绝对中心矩 E ( ∣ X − E ( X ) ∣ k ) E(|X-E(X)|^k) E(XE(X)k)

    其中k是正整数。

  • 混合(原点)矩:设X和Y是随机变量,若
    E ( X k Y L ) k , L = 1 , 2 , . . . E(X^kY^L) \quad k,L=1,2,... E(XkYL)k,L=1,2,...
    存在,称它为X和Y的k+L阶混合(原点)矩

  • 混合中心矩:设X和Y是随机变量,若
    E { [ X − E ( X ) ] k [ Y − E ( Y ) ] L } k , L = 1 , 2 , . . . E\{[X-E(X)]^k[Y-E(Y)]^L\} \quad k,L=1,2,... E{[XE(X)]k[YE(Y)]L}k,L=1,2,...
    存在,称它为X和Y的k+L阶混合中心矩。

    因此,协方差 C o v ( X , Y ) Cov(X,Y) Cov(X,Y)是X和Y的二阶混合中心矩

  • 协方差矩阵:将二维随机变量 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的四个二阶中心矩

    C 11 = E { [ X 1 − E ( X 1 ) ] 2 } C_{11}=E\{[X_1-E(X_1)]^2\} C11=E{[X1E(X1)]2}

    C 12 = E { [ X 1 − E ( X 1 ) ] [ X 2 − E ( X 2 ) ] } C_{12}=E\{[X_1-E(X_1)][X_2-E(X_2)]\} C12=E{[X1E(X1)][X2E(X2)]}

    C 21 = E { [ X 2 − E ( X 2 ) ] [ X 1 − E ( X 1 ) ] } C_{21}=E\{[X_2-E(X_2)][X_1-E(X_1)]\} C21=E{[X2E(X2)][X1E(X1)]}

    C 22 = E { [ X 2 − E ( X 2 ) ] 2 } C_{22}=E\{[X_2-E(X_2)]^2\} C22=E{[X2E(X2)]2}

    排成矩阵的形式:
    ( c 11 c 12 c 21 c 22 ) \begin{pmatrix}c_{11} & c_{12} \\c_{21} & c_{22}\end{pmatrix} (c11c21c12c22)
    称此矩阵为 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的协方差矩阵。

    类似定义n维随机变量 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)的协方差矩阵


    c i j = C o v ( X i , X j ) = E { [ X i − E ( X i ) ] [ X j − E ( X j ) ] } i , j = 1 , 2 , . . . , n c_{ij}=Cov(X_i,X_j)=E\{[X_i-E(X_i)][X_j-E(X_j)]\} \quad i,j=1,2,...,n cij=Cov(Xi,Xj)=E{[XiE(Xi)][XjE(Xj)]}i,j=1,2,...,n
    都存在,称矩阵
    c = ( c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ c n n ) c=\begin{pmatrix}c_{11} & c_{12} & \cdots & c_{1n} \\c_{21} & c_{22} & \cdots & c_{2n} \\\vdots & \vdots & \ddots & \vdots \\c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} c=c11c21cn1c12c22cn2c1nc2ncnn
    ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)的协方差矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值