矩、协方差矩阵
-
k阶原点矩 E ( X k ) E(X^k) E(Xk)
-
k阶中心距 E ( [ X − E ( X ) ] k ) E([X-E(X)]^k) E([X−E(X)]k)
-
k阶绝对原点矩 E ( ∣ X ∣ k ) E(|X|^k) E(∣X∣k)
-
k阶绝对中心矩 E ( ∣ X − E ( X ) ∣ k ) E(|X-E(X)|^k) E(∣X−E(X)∣k)
其中k是正整数。
-
混合(原点)矩:设X和Y是随机变量,若
E ( X k Y L ) k , L = 1 , 2 , . . . E(X^kY^L) \quad k,L=1,2,... E(XkYL)k,L=1,2,...
存在,称它为X和Y的k+L阶混合(原点)矩 -
混合中心矩:设X和Y是随机变量,若
E { [ X − E ( X ) ] k [ Y − E ( Y ) ] L } k , L = 1 , 2 , . . . E\{[X-E(X)]^k[Y-E(Y)]^L\} \quad k,L=1,2,... E{[X−E(X)]k[Y−E(Y)]L}k,L=1,2,...
存在,称它为X和Y的k+L阶混合中心矩。因此,协方差 C o v ( X , Y ) Cov(X,Y) Cov(X,Y)是X和Y的二阶混合中心矩
-
协方差矩阵:将二维随机变量 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的四个二阶中心矩
C 11 = E { [ X 1 − E ( X 1 ) ] 2 } C_{11}=E\{[X_1-E(X_1)]^2\} C11=E{[X1−E(X1)]2}
C 12 = E { [ X 1 − E ( X 1 ) ] [ X 2 − E ( X 2 ) ] } C_{12}=E\{[X_1-E(X_1)][X_2-E(X_2)]\} C12=E{[X1−E(X1)][X2−E(X2)]}
C 21 = E { [ X 2 − E ( X 2 ) ] [ X 1 − E ( X 1 ) ] } C_{21}=E\{[X_2-E(X_2)][X_1-E(X_1)]\} C21=E{[X2−E(X2)][X1−E(X1)]}
C 22 = E { [ X 2 − E ( X 2 ) ] 2 } C_{22}=E\{[X_2-E(X_2)]^2\} C22=E{[X2−E(X2)]2}
排成矩阵的形式:
( c 11 c 12 c 21 c 22 ) \begin{pmatrix}c_{11} & c_{12} \\c_{21} & c_{22}\end{pmatrix} (c11c21c12c22)
称此矩阵为 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的协方差矩阵。类似定义n维随机变量 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)的协方差矩阵
若
c i j = C o v ( X i , X j ) = E { [ X i − E ( X i ) ] [ X j − E ( X j ) ] } i , j = 1 , 2 , . . . , n c_{ij}=Cov(X_i,X_j)=E\{[X_i-E(X_i)][X_j-E(X_j)]\} \quad i,j=1,2,...,n cij=Cov(Xi,Xj)=E{[Xi−E(Xi)][Xj−E(Xj)]}i,j=1,2,...,n
都存在,称矩阵
c = ( c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ c n n ) c=\begin{pmatrix}c_{11} & c_{12} & \cdots & c_{1n} \\c_{21} & c_{22} & \cdots & c_{2n} \\\vdots & \vdots & \ddots & \vdots \\c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} c=⎝⎜⎜⎜⎛c11c21⋮cn1c12c22⋮cn2⋯⋯⋱⋯c1nc2n⋮cnn⎠⎟⎟⎟⎞
为 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)的协方差矩阵