双调和方程定解问题 | 分离变量法(八)| 偏微分方程(二十)

求满足双调和方程定解问题
{ Δ 2 φ = ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) 2 φ = 0 , 0 < x < l ( 17 a ) ∂ 2 φ ∂ y 2 ∣ x = 0 = ∂ 2 φ ∂ y 2 ∣ x = l = 0 ( 17 b ) ∂ 2 φ ∂ y 2 ≠ 0 ( 17 c ) \begin{cases} \Delta^2\varphi=(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2})^2\varphi=0,\quad 0<x<l \quad (17a)\\ \frac{\partial^2 \varphi}{\partial y^2}|_{x=0}=\frac{\partial^2 \varphi}{\partial y^2}|_{x=l}=0 \quad (17b)\\ \frac{\partial^2 \varphi}{\partial y^2} \neq 0 \quad (17c) \end{cases} Δ2φ=(x22+y22)2φ=0,0<x<l(17a)y22φx=0=y22φx=l=0(17b)y22φ=0(17c)
的所有变量分离形状的解。

:显然这个定解问题的解不唯一,且方程和定解条件都不同于可分离变量问题(1).

φ = X ( x ) Y ( y ) \varphi=X(x)Y(y) φ=X(x)Y(y),代入方程(17a)并除以 φ \varphi φ,得
X ( 4 ) X + 2 X ′ ′ T ′ ′ X Y + Y ( 4 ) Y = 0 (18) \frac{X^{(4)}}{X}+2\frac{X''T''}{XY}+\frac{Y^{(4)}}{Y}=0 \tag{18} XX(4)+2XYXT+YY(4)=0(18)
将上式对y求导,得
2 X ′ ′ X ( Y ′ ′ Y ) ′ + ( Y ( 4 ) Y ) ′ = 0 2\frac{X''}{X}(\frac{Y''}{Y})'+(\frac{Y^{(4)}}{Y})'=0 2XX(YY)+(YY(4))=0
从而,可推得
X ′ ′ = − λ X X ( 4 ) = ( − λ X ) ′ ′ = λ 2 X X''=-\lambda X \\ X^{(4)}=(-\lambda X)''=\lambda^2 X X=λXX(4)=(λX)=λ2X
代入方程(18),便有 Y ( y ) Y(y) Y(y)满足的方程
Y ( 4 ) − 2 λ Y ′ ′ + λ 2 Y = 0 Y^{(4)}-2\lambda Y''+\lambda^2Y=0 Y(4)2λY+λ2Y=0
又将 φ = X ( x ) Y ( y ) \varphi=X(x)Y(y) φ=X(x)Y(y)代入定解条件(17b)式,(17c)式,得
∂ 2 φ ∂ y 2 ∣ x = 0 = X ( 0 ) Y ′ ′ ( y ) = 0 ∂ 2 φ ∂ y 2 ∣ x = l = X ( l ) Y ′ ′ ( y ) = 0 ∂ 2 φ ∂ y 2 = X ( x ) Y ′ ′ ( y ) ≠ 0 \frac{\partial^2\varphi}{\partial y^2}|_{x=0}=X(0)Y''(y)=0 \\ \frac{\partial^2\varphi}{\partial y^2}|_{x=l}=X(l)Y''(y)=0 \\ \frac{\partial^2\varphi}{\partial y^2}=X(x)Y''(y)\neq 0 y22φx=0=X(0)Y(y)=0y22φx=l=X(l)Y(y)=0y22φ=X(x)Y(y)=0
可知 Y ′ ′ ( y ) ≠ 0 Y''(y)\neq 0 Y(y)=0,从而有
X ( 0 ) = X ( l ) = 0 X(0)=X(l)=0 X(0)=X(l)=0
解得
λ n = ( n π l ) 2 , X n ( x ) = s i n n π l x , n = 1 , 2 , ⋯ \lambda_n=(\frac{n\pi}{l})^2, \quad X_n(x)=sin\frac{n\pi}{l}x,\quad n=1,2,\cdots λn=(lnπ)2,Xn(x)=sinlnπx,n=1,2,
代入 Y ( y ) Y(y) Y(y)满足的4阶常微分方程,其特征方程为
k 4 − 2 ( n π l ) 2 k 2 + ( n π l ) 4 = 0 k^4-2(\frac{n\pi}{l})^2k^2+(\frac{n\pi}{l})^4=0 k42(lnπ)2k2+(lnπ)4=0
有两个二重根
k 1 , 2 = n π l , k 3 , 4 = − n π l k_{1,2}=\frac{n\pi}{l},\quad k_{3,4}=-\frac{n\pi}{l} k1,2=lnπ,k3,4=lnπ
解得相应的
Y n ( y ) = ( A n + B n y ) c h n π l y + ( C n + D n y ) s h n π l y Y_n(y)=(A_n+B_ny)ch\frac{n\pi}{l}y+(C_n+D_ny)sh\frac{n\pi}{l}y Yn(y)=(An+Bny)chlnπy+(Cn+Dny)shlnπy
问题(17)式的全部变量分离形状解为
{ s i n n π l x [ ( A n + B n y ) c h n π l y + ( C n + D n y ) s h n π l y ] } , n = 1 , 2 , ⋯   , \{sin\frac{n\pi}{l}x[(A_n+B_ny)ch\frac{n\pi}{l}y+(C_n+D_ny)sh\frac{n\pi}{l}y]\}, \quad n=1,2,\cdots, {sinlnπx[(An+Bny)chlnπy+(Cn+Dny)shlnπy]},n=1,2,,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值