视觉控制机械臂的动作

通过视觉控制机械臂的动作是一个涉及多个步骤的过程,包括图像采集、图像处理、目标识别、坐标转换和机械臂控制。以下是一个基本的流程和示例代码,展示如何使用ROS(Robot Operating System)来实现这一功能。

1. 环境准备

确保你已经安装了ROS,并且配置好了相关的开发环境。假设你使用的是ROS Noetic和Ubuntu 20.04。

2. 安装依赖

你需要安装一些必要的ROS包和库:

 

#sh

sudo apt update
sudo apt install -y ros-noetic-desktop-full
sudo apt install -y python3-rosdep python3-rosinstall python3-rosinstall-generator python3-wstool build-essential
sudo apt install -y ros-noetic-cv-bridge ros-noetic-image-transport ros-noetic-vision-opencv

3. 创建ROS工作空间

创建一个新的ROS工作空间来存放你的代码。

 

#sh

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace
cd ..
catkin_make
source devel/setup.bash

4. 创建ROS包

创建一个新的ROS包来存放你的视觉控制程序。

 

#sh

cd ~/catkin_ws/src
catkin_create_pkg visual_control rospy std_msgs sensor_msgs geometry_msgs cv_bridge
cd ..
catkin_make
source devel/setup.bash

5. 编写视觉处理节点

编写一个ROS节点来处理图像并识别目标。假设你的摄像头发布 /camera/image_raw 话题,并且你想通过颜色识别来控制机械臂。

visual_control 包中创建一个 scripts 目录,并在其中创建一个Python脚本 visual_controller.py

 

#python

#!/usr/bin/env python

import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
import cv2
import numpy as np
from geometry_msgs.msg import Point

class VisualController:
    def __init__(self):
        # 初始化节点
        rospy.init_node('visual_controller', anonymous=True)
        
        # 订阅者:订阅摄像头图像
        self.image_sub = rospy.Subscriber('/camera/image_raw', Image, self.image_callback)
        
        # 发布者:发布目标位置
        self.target_pub = rospy.Publisher('/target_position', Point, queue_size=10)
        
        # OpenCV桥接
        self.bridge = CvBridge()
        
        # 控制频率
        self.rate = rospy.Rate(10)  # 10 Hz

    def image_callback(self, data):
        try:
            # 将ROS图像消息转换为OpenCV图像
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
            
            # 图像处理:颜色识别
            hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
            lower_blue = np.array([110, 50, 50])
            upper_blue = np.array([130, 255, 255])
            mask = cv2.inRange(hsv, lower_blue, upper_blue)
            
            # 寻找轮廓
            contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            
            if contours:
                # 找到最大的轮廓
                largest_contour = max(contours, key=cv2.contourArea)
                M = cv2.moments(largest_contour)
                
                if M['m00'] != 0:
                    cx = int(M['m10']/M['m00'])
                    cy = int(M['m01']/M['m00'])
                    
                    # 发布目标位置
                    target_msg = Point()
                    target_msg.x = cx
                    target_msg.y = cy
                    target_msg.z = 0.0  # 假设Z轴不需要
                    self.target_pub.publish(target_msg)
                    
                    # 在图像上绘制中心点
                    cv2.circle(cv_image, (cx, cy), 5, (0, 0, 255), -1)
            
            # 显示图像
            cv2.imshow("Image", cv_image)
            cv2.waitKey(1)
        except Exception as e:
            rospy.logerr(e)

if __name__ == '__main__':
    try:
        controller = VisualController()
        rospy.spin()
    except rospy.ROSInterruptException:
        pass

6. 添加执行权限

确保脚本具有可执行权限。

 

#sh

chmod +x ~/catkin_ws/src/visual_control/scripts/visual_controller.py

7. 修改 CMakeLists.txt

visual_control 包的 CMakeLists.txt 中添加对Python脚本的支持。

 

#cmake

cmake_minimum_required(VERSION 2.8.3)
project(visual_control)

find_package(catkin REQUIRED COMPONENTS
  rospy
  std_msgs
  sensor_msgs
  geometry_msgs
  cv_bridge
)

catkin_package()

include_directories(
  ${catkin_INCLUDE_DIRS}
)

install(DIRECTORY scripts/
  DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}/scripts
)

8. 编写机械臂控制节点

编写一个ROS节点来接收目标位置并控制机械臂移动。假设你使用的是UR机械臂,并且已经安装了 ur_modern_drivermoveit

visual_control 包中创建一个 scripts 目录,并在其中创建一个Python脚本 arm_controller.py

 

#python

#!/usr/bin/env python

import rospy
from geometry_msgs.msg import Point
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg

class ArmController:
    def __init__(self):
        # 初始化节点
        rospy.init_node('arm_controller', anonymous=True)
        
        # 订阅者:订阅目标位置
        self.target_sub = rospy.Subscriber('/target_position', Point, self.target_callback)
        
        # 初始化MoveIt!
        moveit_commander.roscpp_initialize(sys.argv)
        self.robot = moveit_commander.RobotCommander()
        self.scene = moveit_commander.PlanningSceneInterface()
        self.group = moveit_commander.MoveGroupCommander("manipulator")
        
        # 控制频率
        self.rate = rospy.Rate(10)  # 10 Hz

    def target_callback(self, data):
        try:
            # 获取目标位置
            target_x = data.x
            target_y = data.y
            target_z = 0.0  # 假设Z轴固定
            
            # 设置目标位置
            pose_target = geometry_msgs.msg.Pose()
            pose_target.orientation.w = 1.0
            pose_target.position.x = target_x
            pose_target.position.y = target_y
            pose_target.position.z = target_z
            self.group.set_pose_target(pose_target)
            
            # 规划并执行路径
            plan = self.group.plan()
            self.group.execute(plan, wait=True)
            
            # 清除目标位置
            self.group.clear_pose_targets()
        except Exception as e:
            rospy.logerr(e)

if __name__ == '__main__':
    try:
        controller = ArmController()
        rospy.spin()
    except rospy.ROSInterruptException:
        pass

9. 添加执行权限

确保脚本具有可执行权限。

 

#sh

chmod +x ~/catkin_ws/src/visual_control/scripts/arm_controller.py

10. 启动文件

创建一个启动文件来启动你的节点。在 visual_control 包中创建一个 launch 目录,并在其中创建一个 visual_control.launch 文件。

 

#xml

<launch>
  <!-- 启动视觉控制器节点 -->
  <node name="visual_controller" pkg="visual_control" type="visual_controller.py" output="screen" />
  
  <!-- 启动机械臂控制器节点 -->
  <node name="arm_controller" pkg="visual_control" type="arm_controller.py" output="screen" />
</launch>

11. 运行节点

确保你的ROS环境已经正确配置,然后运行启动文件。

 

#sh

roslaunch visual_control visual_control.launch

12. 扩展功能

  • 更复杂的图像处理:你可以使用OpenCV或深度学习库(如TensorFlow、PyTorch)进行更复杂的图像处理。
  • 多目标跟踪:可以实现多目标跟踪和选择逻辑。
  • 状态监控:可以添加更多的状态监控和日志记录,以便更好地调试和维护。

以上是一个基本的示例,展示了如何通过视觉控制机械臂的动作

### 机械视觉跟踪的技术实现 #### 双目视觉机械中的应用 双目视觉是一种模仿人类双眼感知世界的方式,通过两个摄像头获取场景的立体信息。这种技术能够提供深度数据以及三维空间坐标,从而帮助机械完成复杂的操作任务[^1]。例如,在实时3D语义场景感知的研究中提到的方法可以用于增强机器人对周围环境的理解能力。 #### 手眼系统的标定方法 为了使机械能准确理解来自相机的信息并据此行动,需要对手眼系统进行精确标定。这一步骤涉及计算两者之间的相对位姿参数矩阵H_C_E (Hand-to-Eye Transformation Matrix),它描述了末端执行器(End Effector)坐标系相对于摄像机坐标系的姿态和平移量[^2]。只有当这些参数被正确估计出来之后,才能让机器人的动作更加精准可靠。 #### 工业应用场景下的两种配置方式及其特点比较 - **眼随手动型(Eye-on-hand)** 在这种布置模式下, 相机会安装于机械顶端附近并与之同步运动; 这样做可以让设备近距离观察目标物体表面细节特征以便实施精细作业如装配零件或者拾取特定形状物品等操作. 优点在于可以获得高分辨率图像资料同时减少外界干扰因素影响测量精度的可能性. - **独立设置的眼不动型(Fixed camera setup relative to workspace)** 如果把摄影装置放置远离工作区域固定地点,则属于此类情况。这种方式适合大范围监控整个加工流程状况,并且便于规划全局路径轨迹设计等工作需求。 其优势体现在覆盖面积广、视野开阔等方面,但可能面临远距离成像带来的清晰度下降等问题。 ```python import numpy as np from scipy.spatial.transform import Rotation as R def hand_eye_calibration(T_c_w_list, T_e_b_list): """ Perform Hand-Eye Calibration using Tsai-Lenz method Args: T_c_w_list (list): List of transformation matrices from Camera Frame C -> World Frame W T_e_b_list (list): Corresponding list of transformations EndEffector E -> Base B Returns: tuple: Relative pose between end effector and camera H_C_E """ n = len(T_c_w_list) A = [] b = [] for i in range(n): Rcwi = T_c_w_list[i][:3,:3] Rebi = T_e_b_list[i][:3,:3].T @ Rcwi tciw_i = -Rcwi.T@T_c_w_list[i][0:3,-1:] teb_i = T_e_b_list[i][0:3,-1:] Ai = np.hstack((np.eye(3)-Rebi , -(teb_i@(np.eye(3)-Rebi)))) bi = tciw_i.flatten() A.append(Ai.tolist()) b.extend(bi) A = np.array(A).reshape(-1,6) b = np.array(b).reshape(-1,) X,Y,Z,qx,qy,qz= np.linalg.lstsq(A,b,rcond=None)[0] qw=np.sqrt(max(0.,1.-qx**2-qy**2-qz**2)) rot=R.from_quat([qx,qy,qz,w]) trans=np.array([[X],[Y],[Z]]) return(rot.as_matrix(),trans) # Example Usage if __name__ == "__main__": # Assume we have collected some data points during calibration process... T_c_w_samples=[...]; # Transformations from cam frame c->world w at different poses T_e_b_samples=[...]; # Correspondingly sampled transforms base b<->end-eff e rotation_mat,translation_vec=hand_eye_calibration(T_c_w_samples,T_e_b_samples) print("Calculated Hand-To-Eye Pose:") print(f"Rotation:\n{rotation_mat}") print(f"Translation:{translation_vec}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值