DAVID进行基因的GO富集分析

#候选基因进行GO和KEGG富集分析

#DAVID网站用于GO富集分析:DAVID: Functional Annotation Result Summaryhttps://david.ncifcrf.gov/summary.jsp

DAVID 进行GO富集分析 (DAVID首页长这样,网站上也有对应的操作指引)

#点击Upload,在Step1.方框处上传基因集

Step2.选择上传基因的格式【这里上传的为symbol】,Step2a填写对应物种【本文以鸿雁为例】

Step3.选择上传列表的格式,在Step4.点击上传列表

结果查看,点击GO,我主要关注GO的BP, CC和MF三个组分

点击Chart可以查看和下载结果

### 基因通路富集分析方法与工具 #### 使用DAVID进行基因通路富集分析 DAVID是一个强大的在线平台,提供全面的功能注释和富集分析服务。用户只需上传感兴趣的基因列表,选择合适的背景基因集以及设定参数即可完成分析。该工具能够识别出显著富集的生物过程、分子功能及细胞组件,并以表格形式呈现结果[^1]。 ```python import pandas as pd from bioservices import KEGG, DAVID david_service = DAVID() kegg_service = KEGG() # 设置API密钥并登录到DAVID Web Service API api_key = 'your_api_key_here' david_service.set_credentials(api_key) # 准备待分析的数据文件路径 input_file_path = './gene_list.txt' # 提交作业给DAVID服务器 job_id = david_service.addList(input_file_path)['id'] # 获取富集分析的结果链接 result_url = f"https://david.ncifcrf.gov/content.jsp?file={job_id}&tool=summary" print(f"查看完整的富集报告请访问 {result_url}") ``` #### 利用Metascape实现综合性的基因和通路富集分析 Metascape是一款集成式的Web应用程序,它不仅限于单一类型的富集测试,而是提供了更为广泛的视角来审视输入基因集合。除了传统的GO术语之外,还涵盖了KEGG Pathway、Reactome等多种资源的信息检索能力。此外,其独特的交互界面允许研究人员轻松浏览不同层次上的关联模式及其统计意义。 #### 运用Enrichr执行快速便捷的在线富集查询 对于那些寻求简单易用解决方案的研究人员来说,Enrichr无疑是最理想的选择之一。无需注册账户或安装额外软件,仅需复制粘贴目标基因ID至指定区域便能立即获得详尽而直观的结果概览图表。更重要的是,这个网站持续更新维护着多个版本的人类和其他物种特异性库供访客选用。 #### R语言包`clusterProfiler`助力本地化定制开发 如果偏好编程环境下的操作方式,则可以考虑采用专门设计用于R统计计算生态系统的`clusterProfiler`扩展包来进行更深入细致的工作流程构建。此模块内置了丰富的算法选项和支持多样的输出格式转换函数,非常适合追求灵活性和技术细节掌控度较高的团队使用。 ```r library(clusterProfiler) library(org.Hs.eg.db) # 定义差异表达基因向量 diff_expressed_genes <- c("TP53", "BRCA1") # 执行GO富集分析 go_enrichment_result <- enrichGO(gene = diff_expressed_genes, universe = keys(org.Hs.eg.db), keyType = "SYMBOL", ont = "BP", pAdjustMethod = "BH", qvalueCutoff = 0.05) # 展示前五个最显著项 head(as.data.frame(go_enrichment_result), n = 5L) ``` #### GSEA软件包针对排序后的基因集合开展评估 不同于上述几种侧重于离散型个体成员属性检测的方式,Gene Set Enrichment Analysis(GSEA)专注于考察整个样本集中按某种标准排列好的序列内部是否存在某些预定义类别过度聚集的现象。这种方法特别适用于探究复杂条件下微弱却一致的变化趋势,在肿瘤学等领域有着广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值